Implementing Complete Streets

Broward County MPO

March 5, 2014

John LaPlante, PE, PTOE Director of Traffic Engineering T.Y. Lin International, Inc. jlaplante@tylin.com

What is a Complete Street?

A Complete Street is comfortable, convenient & <u>safe</u> for travel via auto, foot, bicycle, & transit

Isn't this the same as Context-Sensitive Design?

Context-sensitive design:

Project-oriented

- Complete streets:
- Process-oriented

- Users adjoining the roadway
- Users of the rightof-way

These approaches are complementary!

What's the difference with CSS?

"While Context-Sensitive Solutions involve stakeholders in considering a transportation facility in its entire social, environmental and aesthetic context,

Complete Streets policies are a reminder that providing for safe travel by users of all modes is the primary function of the corridor." CSS Solutions for Urban Arterials

What's the difference with CSS?

Bicyclists, pedestrians, and transit users are more than "context"

Illustration: AARP

We know how to build good streets

Recently completed roadway expansion with destinations on both sides of the road. Solution with States and the pedestrian?

What is a Complete Streets policy?

A complete streets policy ensures that the entire right-of-way is planned, designed & operated to provide safe access for all users.

Complete Streets is NOT:

- A design prescription
- A mandate for immediate retrofit
- A silver bullet. Other initiatives, such as context sensitivity, are still needed!

Who benefits from Complete Streets?

Why Complete Streets?

About one-third of Americans don't drive: ✓ 21% of Americans over 65 ✓ Children under 16 ✓ Disabled Americans ✓ Those without cars Transit is growing faster than population or driving Most Americans would rather drive less & walk more

Congestion Benefits

Complete Streets are multimodal

Trips in metro areas:

- » 48% are less than 3 miles
- » 28% are less than 1 mile
 - » 65% of trips less than 1
 mile are taken by car

These are all potential bicycle or walking trips

Benefits: Safety

- Sidewalks reduce pedestrian crashes 88%
- Medians reduce crashes 40%
- Road diets reduce crashes 29%
- Countdown signals reduce crashes 25%

Benefits: People with disabilities

Complete Streets improve mobility for disabled people and reduce the need for expensive paratransit service

Benefits: Better use of transit funds

 One year of paratransit service for a daily commuter:
 \$38,500

 Permanent improvements to make a transit stop accessible:
 \$7,000 - \$58,000

Source: Maryland Transit Administration

TERNAT

Benefits: Health

 Americans move... without moving
 60% of adults are risk for diseases associated with inactivity:

- Obesity
- Diabetes
- High blood pressure
- Other chronic diseases

Health Benefits

Obesity is lower in places where people use bicycles, public transportation, and their feet.

Pucher, "Walking and Cycling: Path to Improved Public Health," Fit City Conference, NYC, June 2009

Health Benefits

States with the lowest levels of biking and walking have, on average, the highest rates of obesity, diabetes, and high blood pressure.

Benefits: Physical activity

- Residents are more likely to walk in a neighborhood with sidewalks.
- Cities with more bike lanes have higher levels of bicycle commuting

CS changes intersection design

CS changes intersection design

CS changes bicycling

CS changes bicycling

CS changes transit

CS changes transit

CS changes accessibility

CS changes accessibility

Perceived Barriers to Achieving Complete Streets

- Conflicts with Federal highway standards and guidelines
- Slower speeds reduce mobility and increase costs for all vehicles
- Required to design to Level of Service C for the peak half hour 20 years hence
- Spending for peds and bikes is a luxury we cannot afford

Perceived Barriers to Achieving Complete Streets

- Conflicts with Federal highway standards and guidelines
- Slower speeds reduce mobility and increase costs for all vehicles
- Required to design to Level of Service C for the peak half hour 20 years hence
- Spending for peds and bikes is a luxury we cannot afford

Nothing in Complete Streets Conflicts with National Guidelines

A Policy on

Geometric

Highways and Streets

Design of

Guide for the Planning, Design, and Operation of Pedestrian Facilities

AASHTO: American Association of State Highway and Transportation Officials

2011

2011

1999 (Rev 2012)

Also US Access Board Public Rights-of-Way Also US Access Board Public Rights-of-Way

TYLININTERNATIONAL

Designing Walkable Urban Thoroughfares: A Context Sensitive Approach

> ITE New Recommended Practice

Sets target speed (desirable operating speed) as the most important design element

Perceived Barriers to Achieving Complete Streets

- Conflicts with Federal highway standards and guidelines
- Slower speeds reduce mobility and increase costs for all vehicles
- Required to design to Level of Service C for the peak half hour 20 years hence
- Spending for peds and bikes is a luxury we cannot afford

Why Speed Matters

Pedestrians' chances of death if hit by a motor vehicle SOURCE: Killing Speed and Saving Lives, UK Department of Transportation

Child dart-out: speed is a factor!

First scenario: Speed 25 MPH

First scenario: Speed 25 MPH

First scenario: Speed 25 MPH

Result: Nothing happens beyond one scared child, driver & parent!

Result: a high speed crash

Where do these two scenarios lie on the pedestrian fatality risk scale?

Defining Mobility

Defining Mobility

Viable alternative:

2-way progression set for 30 mph

Benefit/Cost Analysis

Reducing speed from 45 mph to 30 mph

- For a 5-mile trip, a 3.33-minute delay
- Assume 30,000 ADT and \$20/hr driver cost
- \$12.154 million in loss to economy, right?
- > Wrong!
 - Delay for each person is still 3.33 minutes
 - Less time than their daily stop for Starbucks
- Community benefit
 - Slower operating speeds
 - Safer and more comfortable ped crossings

Perceived Barriers to Achieving Complete Streets

- Conflicts with Federal highway standards and guidelines
- Slower speeds reduce mobility and increase costs for all vehicles
- Required to design to Level of Service C for the peak half hour 20 years hence
- Spending for peds and bikes is a luxury we cannot afford

Roadway Capacity Analysis

- Designing to LOS C for peak hour means:
 - Unnecessary pavement, waste of tax dollars
 - Increased ped crossing times, thus reducing vehicular movement times
 - Increased operating speeds for other 22 hours

ALWAYS design urban roadways to LOS D

Will traffic volumes always increase? Maybe not

Since 2005 US VMT has been flat

Multimodal Level of Service

FIGURE 1 Existing 80-ft right-of-way: four lanes with parking.

	Before	After		e Lu	· ATOM	0		S. S. Page	GRAPHIC
Automobile	D	E			SA				BY BRIAN S
Bicycle	E	С	A.						OLAND, CD
Pedestrian	C	В					Ø E		M SMITH
Transit	D	D				(pag)	1º 1=		
Midblock LOS			2' a'-0" 5'-0" # Parking Bicycli Lane	ar e Travel	ゴローン インボンボン Lane	11'-0" Travel Lane	Bicycle Pa Lane	a*-0" 2' a*-6" # # # arking ≝ Sidewal	-x ^r Ik

FIGURE 2 Two lanes with median-turn lane, bicycle lanes, and parking.

Source: Highway Capacity Manual, 2010

Perceived Barriers to Achieving Complete Streets

- Conflicts with Federal highway standards and guidelines
- Slower speeds reduce mobility and increase costs for all vehicles
- Required to design to Level of Service C for the peak half hour 20 years hence
- Spending for peds and bikes is a luxury we cannot afford

Costs of Retrofitting Urban Arterials to Complete Streets

- Requires arterial traffic calming/taming:
 - 1. Controlling operating speeds
 - 2. Ped-friendly street crossings
- Requires facilities for nonmotorized users:
 - 1. Pedestrians
 - 2. Bicycles
 - 3. Transit

Costs of Retrofitting Urban Arterials to Complete Streets

- Requires arterial traffic calming/taming:
 - **1.** Controlling operating speeds
 - 2. Ped-friendly street crossings
- Requires facilities for nonmotorized users:
 - 1. Pedestrians
 - 2. Bicycles
 - 3. Transit

- Design to D LOS
- Signal progression
- Narrower travel lanes
- Road diets
- Raised medians and landscaping
- Retain curb parking

Design to D LOS – Less pavement = less cost

- Design to D LOS Less pavement = less cost
- Signal progression Cost to interconnect

Narrower Travel Lanes

70 mph lane widths not needed to handle 30 mph traffic

Narrower Travel Lanes

News Flash! 10 and 11-foot lanes are just as safe as 12-foot lanes on urban arterials with posted speeds less than 45 mph

- Design to D LOS Less pavement = less cost
- Signal progression Cost to interconnect
- Narrower travel lanes Less pavement = less cost

Effect of Converting 4-Lane Roads to 3-Lane and TWLTL

"Classic Road Diet" 29% reduction in total crashes/mile

Three crash types can be reduced by going from 4 to 3 lanes

1. Rear enders

Three crash types can be reduced by going from 4 to 3 lanes

2. Side swipes

Three crash types can be reduced by going from 4 to 3 lanes

3. Left turn/broadside

Handles 20,000 ADT

Valencia Street Bicycle Volumes PM peak hour counts

- Which road carries more traffic?
- Which road produces higher speed?
 - ✓ 4-lane: Faster driver can pass others
 - 2-lane: Slower driver sets speed
- > Which road produces higher crash rate?
- Which is better for bicyclists? Peds? Businesses?

- Design to D LOS Less pavement = less cost
- Signal progression Cost to interconnect
- Narrower travel lanes Less pavement = less cost
- Road diets Install with resurfacing, no additional cost

Raised Medians

Continuous raised median 40% reduction in pedestrian crashes

VTERNATIO

Raised Medians

Flush median is not a refuge

Raised Medians

Add a raised island

Median/Parkway Landscaping

Costs to Control Operating Speeds

- Design to D LOS Less pavement = less cost
- Signal progression Cost to interconnect
- Narrower travel lanes Less pavement = less cost
- Road diets Install with resurfacing, no additional cost
- Raised medians and landscaping With roadway reconstruction

Retain Curb Parking

Eliminating on-street parking encourages cars to go faster and discourages neighborhood business

Costs to Control Operating Speeds

- Design to D LOS Less pavement = less cost
- Signal progression Cost to interconnect
- Narrower travel lanes Less pavement = less cost
- Road diets Install with resurfacing, no additional cost
- Raised medians and landscaping With roadway reconstruction
- Retain curb parking No cost, parking meter revenue

Retrofitting Urban Arterials to Complete Streets

- Requires arterial traffic calming/taming:
 - 1. Controlling operating speeds
 - **2.** Ped-friendly street crossings
 - ✓ Geometric issues
 - ✓ Signal considerations
- Requires facilities for nonmotorized users:
 - 1. Pedestrians
 - 2. Bicycles
 - 3. Transit

Costs for Ped-Friendly Geometrics

- Tighten corner curb radii
- Corner "pork chop" islands
- Eliminate free flow right turn lanes
- Accessible curb ramps
- Curb bulb-outs

Effect of arge radius on crivers

They drive fast, ignoring pedestrians

Tighten Corner Curb Radii

Large corner radii:

- Allow high-speed turns by cars
 - Less likely to yield
 - Injury severity is higher at higher speeds

Tighten Corner Curb Radii

- Large corner radii:
 Increase crossing distance
 - Longer crosswalk means more pedestrian signal time, reducing roadway capacity for vehicles

Costs for Ped-Friendly Geometrics

Tighten corner curb radii – With roadway reconstruction

Corner "Pork Chop" Islands

Benefits:

 Separate conflicts & decision points
 Reduce crossing distance
 Improve signal timing
 Reduce ped crashes (29%)

Costs for Ped-Friendly Geometrics

- Tighten corner curb radii With roadway reconstruction
- Corner "pork chop" islands With roadway reconstruction

Free Flow Right Turn Lanes

Eliminate free flow turns across crosswalks/bikeways

Free Flow Right Turn Lanes

Eliminate free flow turns across crosswalks/bikeways

Costs for Ped-Friendly Geometrics

- Tighten corner curb radii With roadway reconstruction
- Corner "pork chop" islands With roadway reconstruction
- Eliminate free flow right turn lanes With ramp reconstruction

Accessible Curb Ramps

Eliminate movement barriers

Accessible Curb Ramps

Accessible Ramp Design

Important design consideration: crosswalks, ramps & sidewalks should line up

Costs for Ped-Friendly Geometrics

- Tighten corner curb radii With roadway reconstruction
- Corner "pork chop" islands With roadway reconstruction
- Eliminate free flow right turn lanes With ramp reconstruction
- Accessible curb ramps As part of your Transition Plan

Curb Bulb-outs

- Reduce crossing distance
- Improve sight distance and sight lines
- Prevent encroachment by parked cars
- Create space for curb ramps and landings

Costs for Ped-Friendly Geometrics

- Tighten corner curb radii With roadway reconstruction
- Corner "pork chop" islands With roadway reconstruction
- Eliminate free flow right turn lanes With ramp reconstruction
- Accessible curb ramps As part of your Transition Plan
- Curb bulb-outs With roadway reconstruction <u>and</u> on-street parking

Retrofitting Urban Arterials to Complete Streets

- Requires arterial traffic calming/taming:
 - 1. Controlling operating speeds

2. Ped-friendly street crossings

- ✓ Geometric issues
- Signal considerations
- Requires facilities for nonmotorized users:
 - 1. Pedestrians
 - 2. Bicycles
 - 3. Transit

Pedestrian Signal Costs

- Time signals for 3.5 ft/sec walking speed
- Countdown clocks
- Ped actuated HAWK signals
- Rectangular Rapid Flash Beacon

Pedestrian signal timing

- Recent studies found that previous 4.0 fps walking speed based on <u>average</u> walking speeds (not 15th percentile)
- 2009 MUTCD now recommends using a pedestrian walking speed of 3.5 fps for FDW and 3.0 fps for overall WALK phase

Pedestrian Signal Costs
 Time signals for 3.5 ft/sec walking speed
 – Signal maintenance

Effective Communications

50% of pedestrians in the U.S. do not understand that "Flashing Don't Walk" really means it is OK to continue walking

So we put signs like this to "correct" the problem

Countdown Clocks

Pedestrian count-down signal tells pedestrians how much crossing time is left

Countdown Clocks

Results from San Francisco: 25% Crash Reduction Factor after countdown signals installed

Pedestrian Signal Costs

- Time signals for 3.5 ft/sec walking speed
 Signal maintenance
- Countdown clocks Can be added for roughly \$2,000/intersection

HAWK Pedestrian Hybrid Signal

HAWK (High Intensity Activated Crosswalk) Also in 2009 MUTCD

Drivers see Beacon

Peds see Pedhead

Hybrid Beacon Sequence

Blank for drivers

1

2 Flashing yellow

5 Wig-Wag

Return to 1

Pedestrian Hybrid Beacon (HAWK)

2009 MUTCD Chapter 4F

Pedestrian Signal Costs

- Time signals for 3.5 ft/sec walking speed
 Signal maintenance
- Countdown clocks Can be added for roughly \$2,000/intersection
- Ped actuated HAWK signals Half the cost of standard ped signal; lower warrant

Rectangular Rapid Flash LED Beacon

- Beacon is yellow, rectangular, and has a rapid "stutter" flash
- Beacon located between the warning sign and the arrow plaque
- Must be pedestrian activated (pushbutton or passive)
- Studies indicate motorist yielding rates increased from 18.2% to 81.2% for 2 beacons and to 87.8% for 4 beacons
- Interim approval from FHWA in July 2008

Pedestrian Signal Costs

- Time signals for 3.5 ft/sec walking speed
 Signal maintenance
- Countdown clocks Can be added for roughly \$2,000/intersection
- Ped actuated HAWK signals Half the cost of standard ped signal; lower warrant
- Rectangular Rapid Flash Beacon \$20K and no specific warrant

Costs for Facilities for Nonmotorized Users

Pedestrians
 Bicycles
 Transit

Pedestrians can get by without sidewalks on quiet streets

Shoulders serve pedestrians in rural areas

Rural Environments: Paved Shoulders

Crash Reduction of 70%

Urban/Suburban Environments: Sidewalks

Crash Reduction of 88%

Buffer sidewalks with planter strip/furniture zone:

- Space for trees and street furniture
- Easy to meet ADA at driveways and curb ramps
- More pleasant to walk on

Narrow curbside sidewalks are inadequate in commercial areas

Sidewalk Design

Set triggers for future sidewalks ✓ Development densities ✓ Developer requirements ✓ Going from open to closed drainage

Costs for Facilities for Nonmotorized Users

- Pedestrians Create gap infill program funded by developers, new roadway construction, program small amount each year
 Bicycles
- 3. Transit

Costs for Facilities for Nonmotorized Users

- Pedestrians Create gap infill program funded by developers, new roadway construction, program small amount each year
- **2.** Bicycles

3. Transit

Bikes Belong

"All highways, except those where bicyclists are legally prohibited, should be designed and constructed under the assumption that they will be used by cyclists." AASHTO

Bikes Belong

"Therefore, bicycles should be considered in all phases of transportation planning, new roadway design, roadway construction and capacity improvement projects, and transit projects." AASHTO

Typical Bicyclists

Typical Bicyclists

Bicyclist Characteristics Four Bicyclist Types*

Strong & Fearless <1% Enthused & Confident 7% Interested but Concerned 60% (Includes children) No Way, No How 33%

* Roger Geller, Portland, OR

Sidewalks are Low Stress

It's okay for young kids to ride on sidewalks

An adult bicyclist on a sidewalk is not a good sign

A cyclist on a sidewalk interferes with pedestrians

A cyclist on a sidewalk places himself at risk

Especially when riding against traffic!

RELATIVE DANGER INDEX of various types of facilities

Major Streets w/o bike lanes1.28Minor Streets w/o bike lanes1.04*Streets with bike lanes0.5Mixed-use paths0.67Sidewalks5.32(* = shared roadway)

1.00 = median

Source: William Moritz, U.W. - "Accident Rates for Various Bicycle Facilities" - based on 2374 riders, 4.4 million miles

CELLULA

SUBL

CIN

Provide space on streets ...

- Bike lanes most appropriate on <u>urban</u> thoroughfares
- They get you from one part of town to another efficiently
- Intersections stop or signal controlled
- No point in striping local streets with bike lanes

Facility Selection

Bicycle Lanes y OK to reduce travel lane

10 and 11-foot lanes are just as safe as 12-foot lanes on urban arterials with posted speeds less than 45 mph

10-5-7 Retrofit

Option when:

- Current lane 22 ft (6.7 m) with parking
- Vehicle speeds 30 mph

How to implement:

- Reduce width of travel and parking lanes
- Accepted by AASHTO

Implemented in Chicago

Retrofitting for Bike Lanes

- Reduce travel lane widths
- Reduce number of travel lanes
- Remove, narrow, or reconfigure parking
- Other design options

Typical "Road Diet"

Shared Lane Markings

Shared Lane Markings

- "Sharrow"
 - Reinforces shared lane concept
 - Keeps bikes away from door zone

Where to use:

- Narrow shared use road where bicyclists tend to ride too close to parked cars or curb
- Low roadway speeds with high parking turnover

Signing of Shared Roadways

D11-1

- Generic "Bike Route" signs not recommended
- Routes should be designated with a name or number.

Signing of Shared Roadways

Route Signage

- Distance
- Direction
- Destination

NTERNAT

Directional and destination signs are now in the 2009 MUTCD (Section 2B-20)

Shared Use Paths

- Bike facilities that are separated from the roadway
- Typically located on exclusive ROW
 - No fixed objects
 - Minimal cross-flow by motor vehicles

Shared Use Paths

- Users include:
 - Bicyclists
 - Skaters
 - Wheelchairs
 - Pedestrians
 - Joggers/runners,
 - People with baby strollers
 - Dogs with people

Paths Next to Roads

Recommended minimum separation – 5 ft

Adjacent Path Intersection

Side Path vs. Bike Lanes

Traffic Restrictions

Use bollards only when absolutely necessary

Traffic Restrictions

Use bollards only when absolutely necessary

Traffic Restrictions

Use bollards only when absolutely necessary

Costs for Facilities for Nonmotorized Users

- Pedestrians Create gap infill program funded by developers, new roadway construction, program small amount each year
- 2. Bicycles Low hanging fruit first: signing and restriping with street resurfacing
- 3. Transit

Costs for Facilities for Nonmotorized Users

- Pedestrians Create gap infill program funded by developers, new roadway construction, program small amount each year
- 2. Bicycles Low hanging fruit first: signing and restriping with street resurfacing
- **3.** Transit

Transit: Bus is most common mode

Transit: Only choice for many people

Shelters must be accessible (grass makes it inaccessible)

Every bus stop is a pedestrian crossing and all known crossing techniques apply to every bus stop

Costs for Facilities for Nonmotorized Users

- Pedestrians Create gap infill program funded by developers, new roadway construction, program small amount each year
- 2. Bicycles Low hanging fruit first: signing and restriping with street resurfacing
- 3. Transit See ped friendly crossings previously described

Perceived Barriers to Achieving Complete Streets

- Conflicts with Federal highway standards and guidelines
- Slower speeds reduce mobility and increase costs for all vehicles
- Required to design to Level of Service C for the peak half hour 20 years hence
- Spending for peds and bikes is a luxury we cannot afford

ALL MYTHS!

What does a complete street look like?

- One size doesn't fit all:
 - Complete Streets doesn't mean every street has sidewalks, bike lanes and transit

There is no magic formula

A slow-speed shared street

One crossing completes a Safe Route to School

Shoulder bikeways on rural roads

Busy multi-modal thoroughfares

Suburban thoroughfares

Residential skinny streets

Low traffic shared streets

Historic Main Street

Are sensitive to the community
Serve all who potentially will use the street
Will save money if fully implemented

FINAL THOUCH

Designating peds and bikes as "alternative transportation" is like calling women alternative men

Mark Fenton

Thank you!

