SR 7 MULTIMODAL IMPROVEMENTS CORRIDOR STUDY TECHNICAL APPENDIX F: MOBILITY HUB PROJECT DEVELOPMENT MAY 24, 2016

For complaints, questions or concerns about civil rights or nondiscrimination; or for special requests under the Americans with Disabilities Act, please contact: Christopher Ryan, Public Information Officer/Title VI Coordinator at (954) 876-0036 or ryanc@browardmpo.org

Table of Contents

Introduction	1
Abbreviated Study Intersections	3
Pembroke Road	4
Preliminary Recommendations	4
Preliminary Environmental Impact Assessment	4
Hollywood Boulevard	5
Preliminary Recommendations	5
Preliminary Environmental Impact Assessment	6
Johnson Street	7
Preliminary Recommendations	7
Preliminary Environmental Impact Assessment	8
Sheridan Street	
Preliminary Recommendations	
Preliminary Environmental Impact Assessment	11
Stirling Road	
Preliminary Recommendations	12
Preliminary Environmental Impact Assessment	13
Riverland Road	13
Preliminary Recommendations	13
Preliminary Environmental Impact Assessment	13
Lauderhill Mall Area	14
Preliminary Recommendations	14
Preliminary Environmental Impact Assessment	15
Kimberly Boulevard	16
Preliminary Recommendations	16

SR7

Multimodal Improvements CORRIDOR STUDY

Preliminary Environmental Impact Assessment	
Sample Road/Turtle Creek Drive	
Preliminary Recommendations	
Preliminary Environmental Impact Assessment	
Compatability with Ongoing Projects	
Full Study Intersections	20
Overview of Potential Recommendations	
Miramar Parkway/Hallandale Beach Boulevard	
Preliminary Recommendations	
Preliminary Environmental Impact Assessment	
Constructability Review	25
VISSIM Analysis	
Planning-Level Cost Estimates	
Next Steps: Implementation	
Davie Boulevard	
Preliminary Recommendations	
Preliminary Environmental Impact Assessment	
Constructability Review	
VISSIM Analysis	
Planning-Level Cost Estimates	
Next Steps: Implementation	
Broward Boulevard	
Preliminary Recommendations	
Preliminary Environmental Impact Assessment	
Constructability Review	
VISSIM Analysis	

Planning-Level Cost Estimates	. 37
Next Steps: Implementation	. 37
Oakland Park Boulevard	. 38
Preliminary Recommendations	. 38
Preliminary Environmental Impact Assessment	.41
Constructability Review	. 42
VISSIM Analysis	.44
Planning-Level Cost Estimates	.44
Next Steps: Implementation	.44
Commercial Boulevard	.45
Preliminary Recommendations	.45
Preliminary Environmental Impact Assessment	. 47
Constructability Review	. 48
VISSIM Analysis	. 50
Planning-Level Cost Estimates	. 50
Next Steps: Implementation	. 50
Atlantic Boulevard	.51
Preliminary Recommendations	.51
Preliminary Environmental Impact Assessment	. 53
Constructability Review	. 53
VISSIM Analysis	. 54
Planning-Level Cost Estimates	. 55
Next Steps: Implementation	. 55
Conclusion	56
Appendix F.1: Constructability Review	57
Appendix F.2: VISSIM Analysis Technical Memorandum	62

Appendix F.3: Preliminary Engineer's Opinion of Probable Construction Costs	78
Appendix F.4: Mobility Hub Project Sheets	85
List of Tables	
Table 1: Pembroke Road Environmental Assessment	5
Table 2: Hollywood Boulevard Environmental Assessment	6
Table 3: Johnson Street Environmental Assessment	8
Table 4: Sheridan Street Environmental Assessment	11
Table 5: Stirling Road Environmental Assessment	13
Table 6: Riverland Road Environmental Assessment	14
Table 7: Lauderhill Mall Area Environmental Assessment	15
Table 8: Kimberly Boulevard Environmental Assessment	17
Table 9: Sample Road/Turtle Creek Drive Environmental Assessment	18
Table 10: Compatibility of Recommendations with SR 7 Reconstruction Project	19
Table 11: Miramar Parkway/Hallandale Beach Boulevard Environmental Assessment	24
Table 12: Miramar Parkway/Hallandale Beach Boulevard Constructability and Right-of-Way Review Summary	26
Table 13: Miramar Parkway/Hallandale Beach Boulevard VISSIM Analysis Results	27
Table 14: Davie Boulevard Environmental Assessment	30
Table 15: Davie Boulevard Constructability Review Summary	31
Table 16: Davie Boulevard VISSIM Analysis Results	32
Table 17: Broward Boulevard Environmental Assessment	35
Table 18: Broward Boulevard Constructability and Right-of-Way Review Summary	36
Table 19: Broward Boulevard VISSIM Analysis Results	36
Table 20: Oakland Park Boulevard Environmental Assessment	41
Table 21: Oakland Park Boulevard Constructability and Right-of-Way Review Summary	43
Table 22: Oakland Park Boulevard VISSIM Analysis Results	44

Table 23: Commercial Boulevard Environmental Assessment	. 47
Table 24: Commercial Boulevard Constructability and Right-of-Way Review Summary	. 49
Table 25: Commercial Boulevard VISSIM Analysis Results	. 50
Table 26: Atlantic Boulevard Environmental Assessment	. 53
Table 27: Atlantic Boulevard Constructability and Right-of-Way Review Summary	. 54
Table 28: Atlantic Boulevard VISSIM Analysis Results	. 55

List of Figures

Figure 1: Hollywood Boulevard Historical Resources	7
Figure 2: Johnson Street Historical Resources	9
Figure 3: Johnson Street Contamination Sites	10
Figure 4: Sheridan Street Contamination Sites	12
Figure 5: Riverland Road Contamination Sites	14
Figure 6: Lauderhill Mall Area Contamination Sites	16
Figure 7: Kimberly Boulevard Contamination Sites	17
Figure 8: Miramar Parkway/Hallandale Beach Boulevard Preliminary Recommendations	23
Figure 9: Miramar Parkway/Hallandale Beach Boulevard Contamination Sites	25
Figure 10: Davie Boulevard Preliminary Recommendations	29
Figure 11: Broward Boulevard Preliminary Recommendations	34
Figure 12: Oakland Park Boulevard Preliminary Recommendations	40
Figure 13: Oakland Park Boulevard Contamination Sites	42
Figure 14: Commercial Boulevard Preliminary Recommendations	46
Figure 15: Commercial Boulevard Contamination Sites	48
Figure 16: Atlantic Boulevard Preliminary Recommendations	52

INTRODUCTION

Preliminary recommendations for the 15 key intersections identified along SR 7, introduced and detailed in Chapter 3-B, were developed based on the existing conditions data that were collected, field review observations, engineering analysis and judgment, and input from the project advisory committee. These recommendations were also presented to BCT and FDOT and were modified based on their input and comments. Chapter 3-C also outlined how the 15 intersections were categorized, either as full study intersections or abbreviated study intersections.

The preliminary recommendations for the abbreviated study intersections mainly included improvements to general traffic operations and roadway geometry to improve safety such as pedestrian signage, high emphasis crosswalks, lighting, and tightening curb radii. Many of these recommendations can be implemented using an existing FDOT push-button contract, considering FDOT's emphasis on improving pedestrian safety along state roads. This Technical Appendix will give a brief overview of the abbreviated study intersections' recommendations along with an analysis of any associated environmental impacts. This environmental impact assessment included a desktop GIS analysis of historical resources, contaminated sites, existing wetlands, and existing land uses. The data used were collected from the Florida Geographic Data Library (FGDL).

The preliminary recommendations for the full study intersections generally include the same safety improvements as the abbreviated study intersections but also include context sensitive hub infrastructure improvement recommendations that required a more detailed analysis. Analysis of these full study intersection improvements included a constructability review to assess the impacts to right-of-way, drainage, existing utilities, and other site specific considerations Because some of the full study intersection recommendations included queue jumps and queue bypass lanes, impacts to signal timing and overall traffic flow were analyzed using a detailed VISSIM analysis that quantified impacts to traffic delay and queuing. These detailed analyses were accompanied by planning-level cost estimates and the same desktop analysis of environmental impacts that was conducted for the abbreviated study intersections.

The purpose of this technical appendix is to document the analysis of the proposed recommendations and determine if there are any fatal flaws that make implementation less feasible. Ultimately, all of the reviews and assessments performed are meant to aid in the development of the conceptual design of recommended improvements. Once the recommendations have been further analyzed and found to be feasible, they will then be prioritized in a subsequent implementation plan that can be delivered to FDOT for programming the recommendations into manageable, bid-able projects, or in conjunction with FDOT's existing resurfacing or related project improvement programs. Because many of these recommendations

include improvements to transit operations and infrastructure, close coordination with BCT will also be necessary for implementation.

The following sections detail the assessment of each intersection's recommendations starting with the abbreviated study intersections followed by the full study intersections, from a south to north geographic perspective.

ABBREVIATED STUDY INTERSECTIONS

Nine intersections were selected and categorized as abbreviated study intersections mainly because of their relatively low ranking of average number of daily BCT boardings in conjunction with their relatively low number of bicycle/pedestrian-related crashes when compared to the other intersections selected for Mobility Hub infrastructure improvements along the corridor. Seven of these intersections had other/additional justifications for being selected as an abbreviated study intersection, which are further described below:

- > Pembroke Road: This intersection was also selected as an abbreviated study due to the roadway widening construction currently underway.
- > Hollywood Boulevard: Although this intersection ranked fifth overall for BCT boardings and third overall for bicycle/pedestrian-related crashes among the 15 intersections selected for Mobility Hub infrastructure improvements, this intersection was ultimately selected as an abbreviated study due to the roadway widening construction currently underway and because of the current hub study being conducted by FDOT/AECOM.
- > Johnson Street: This intersection was also selected as an abbreviated study due to the roadway widening construction currently underway.
- Sheridan Street: Although this intersection ranked fourth in overall for bicycle/pedestrianrelated crashes among the 15 intersections selected for Mobility Hub infrastructure improvements, this intersection was ultimately selected as an abbreviated study due to the roadway widening construction currently underway.
- > Stirling Road: This intersection was also selected as an abbreviated study due to the roadway widening construction currently underway.
- > The Lauderhill Mall area: This intersection was also selected as an abbreviated study because BCT has programmed construction for a new transit center at the Lauderhill Mall to begin in 2016.
- > Sample Road/Turtle Creek Drive: This intersection was also selected as an abbreviated study due to on-going planning studies related to the Sample Road/SR 7 interchange.

PEMBROKE ROAD

Preliminary Recommendations

The major focus for this intersection was to improve the pedestrian infrastructure and overall safety for pedestrians. Similar to most of the other abbreviated study intersections, basic roadway and safety improvements are recommended, which can easily be implemented under an existing FDOT resurfacing program and/or an existing FDOT push-button contract. The following recommendations were developed based on the existing baseline conditions and observations made during the field review:

- > Upgrade existing pedestrian push buttons and associated signage
- > Upgrade all crosswalks to high-emphasis
- > Relocate curb ramp at southwest corner
- > Tighten radius at all corners the southeast and northwest corners are top priority
- > Construct a sidewalk on the west side of SR 7 north of Pembroke Road
- > Complete sidewalk network on west side of SR 7 south of Pembroke Road
- > Create an open bus bay for the existing far-side northbound bus stop. Currently, there is a 'standard' closed bus bay/right turn lane.
 - Implement a queue bypass lane
 - Provide a shelter
- > Relocate the existing far-side southbound bus stop closer to the intersection
 - o Provide a shelter

Preliminary Environmental Impact Assessment

The desktop GIS analysis revealed that there are no existing wetlands, contaminated sites, or historical resources within the influence area of the intersection (Table 1). The recommendations to create an open bus bay for the existing far-side northbound bus stop and to relocate the existing far-side southbound bus stop may have some impacts to the existing right-of-way and will likely require coordination with private property owners. A more detailed analysis would be necessary prior to implementing these two recommendations.

Table 1: Pembroke Road Environmental Assessment

Land Use	Historical Resources	Wetlands	Contamination Sites
Primarily retail/office, surrounding residential to the west and north, industrial to the SE, and institutional to the SW	None	None	None

HOLLYWOOD BOULEVARD

Preliminary Recommendations

Because this intersection is under construction, the proposed recommendations focused on including the necessary pedestrian amenities such as high emphasis crosswalks. Also, because there are far-side bus bays already programmed as a part of the on-going construction, implementing queue jumps appear feasible.

There is also an on-going FDOT/AECOM study that is recommending improvements to the SR 7/Hollywood Boulevard intersection through a Hollywood Mobility Hub Analysis Report aimed to improve pedestrian safety and better facilitate efficient transfers. This report proposes relocating the southbound near-side and westbound far-side bus stops closer to the intersection, relocating the far-side eastbound bus stop closer to the intersection with a bus bay, proving shelters for all bus stops, installing landscaping and pedestrian channelization barriers with appropriate signage on the west and east medians, and supporting future premium transit with a transit-oriented center/hub on the northeast corner. The few recommendations that were produced by this SR 7 Multimodal Improvements Corridor Study augment and compliment those recommendations from the FDOT/AECOM Mobility Hub Analysis Report for this intersection.

The following recommendations were developed based on the existing baseline conditions and observations made during the field review:

- > Upgrade existing pedestrian push buttons and associated signage
- > Upgrade all crosswalks to high-emphasis
- > Consider implementing a queue jump treatment for the northbound and southbound directions, considering that bus bays are programmed as a part of the road widening project

Preliminary Environmental Impact Assessment

The desktop GIS analysis revealed that there are no existing wetlands or contaminated sites within the influence area of the intersection (Table 2). However, the GIS analysis did indicate that a historical resource (Figure 1) is in close proximity to the intersection but is not expected to be impacted by the proposed recommendations. Additional historical structures were located to the south and north of the intersection, but are not considered to be impacted. The recommendations to implement queue jumps would need to be further analyzed using VISSIM to determine the impacts to intersection delay, queuing, and overall level of service prior to implementation. This analysis was not part of the current SR 7 effort due to the ongoing construction.

Table 2: Hollywood Boulevard Environmental Assessment

Land Use	Historical Resources	Wetlands	Contamination Sites
Primarily retail/office, surrounding residential to the north	One	None	None

Figure 1: Hollywood Boulevard Historical Resources

JOHNSON STREET

Preliminary Recommendations

Because this intersection is under construction, the proposed recommendations focused on including the necessary pedestrian amenities such as high emphasis crosswalks. The following recommendations were developed based on the existing baseline conditions and observations made during the field review:

- > Upgrade existing pedestrian push buttons and associated signage
- > Upgrade all crosswalks to high-emphasis
- > Relocate the existing far-side northbound bus stop closer to the intersection

SR 7 Multimodal Improvements Corridor Study | *Project Development* www.ImproveSR7.org

- Provide a shelter
- > Relocate the existing far-side westbound bus stop closer to the intersection Provide a shelter

Preliminary Environmental Impact Assessment

The desktop GIS analysis revealed that there are no existing wetlands within the influence area of the intersection (Table 3). However, the GIS analysis did indicate that a historical resource (Figure 2) is in close proximity to the intersection but is not expected to be impacted by the proposed recommendations. Additional historical structures were located to the south and north of the intersection, but are not considered to be impacted. Furthermore, the evaluation results also indicated that one contamination site (Figure 3) was identified in close proximity to the intersection, an active petroleum cleanup on the northeast corner. The proposed recommendations are not expected to impact this identified site.

The recommendations to relocate the existing far-side westbound and northbound bus stops closer to the intersection may have some impacts to the existing right-of-way and will likely require coordination with the existing private property owner. A more detailed right-of-way analysis would be necessary prior to implementing these two recommendations.

Land Use	Historical Resources	Wetlands	Contamination Sites
Primarily retail/office, surrounding residential, some	One	None	One active petroleum
industrial to the west			cleanup site

Table 3: Johnson Street Environmental Assessment

Multimodal Improvements CORRIDOR STUDY Figure 2: Johnson Street Historical Resources

SR7

Multimodal Improvements CORRIDOR STUDY

Figure 3: Johnson Street Contamination Sites

SHERIDAN STREET

Preliminary Recommendations

The major focus for this intersection was to improve the pedestrian infrastructure and overall safety for pedestrians. Similar to most of the other abbreviated study intersections, basic roadway and safety improvements are recommended, which can easily be implemented under an existing FDOT resurfacing program and/or an existing FDOT push-button contract. The following recommendations were developed based on the existing baseline conditions and observations made during the field review:

- > Upgrade all crosswalks to high-emphasis
- > Verify intersection lighting
- > Provide a shelter for the existing far-side northbound bus stop

- > Relocate the existing far-side eastbound bus stop closer to the intersection and create an open bus bay.
 - Implement a queue bypass lane
 - Provide a shelter
- > Consider moving the existing far-side westbound bus stop closer to the intersection

Preliminary Environmental Impact Assessment

The desktop GIS analysis revealed that there are no existing wetlands or historical resources within the influence area of the intersection (Table 4). However, the GIS analysis did indicate that two contamination sites (Figure 4) are in close proximity to the intersection. These two active petroleum cleanup sites, one on the southwest corner and one on the southeast corner are not expected to be impacted by the proposed recommendations.

The recommendations to create an open bus bay for the existing far-side eastbound bus stop and to relocate the existing far-side westbound bus stop may have some impacts to the existing rightof-way and would require a more detailed analysis and coordination with the existing private property owner prior to implementation. Furthermore, the recommendation to implement a queue bypass lane for the eastbound movement would need to be further analyzed using VISSIM to determine the impacts to intersection delay, queuing, and overall level of service prior to implementation. Detailed VISSIM for this intersection was not completed as part of this study due to the ongoing construction.

Table 4: Sheridan Street Environmental Assessment

Land Use	Historical Resources	Wetlands	Contamination Sites
Primarily retail/office,			Two active
surrounding residential and some	None	None	petroleum
public/semi-public, recreation			cleanup sites

Multimodal Improvements CORRIDOR STUDY

Figure 4: Sheridan Street Contamination Sites

STIRLING ROAD

Preliminary Recommendations

The major focus for this intersection was to improve the pedestrian infrastructure and overall safety for pedestrians. Similar to most of the other abbreviated study intersections, basic roadway and safety improvements are recommended, which can easily be implemented under an existing FDOT resurfacing program and/or an existing FDOT push-button contract. The following recommendations were developed based on the existing baseline conditions and observations made during the field review:

- > Upgrade all crosswalks to high-emphasis
- > Consider providing a shelter for all of the existing bus stops
- > Relocate the existing far-side southbound bus stop closer to the intersection
 - \circ Will require coordination with the Seminole Indian Tribe

• Will require coordination with the Seminole Indian Tribe

Preliminary Environmental Impact Assessment

The desktop GIS analysis revealed that there are no existing wetlands, contaminated sites, or historical resources within the influence area of the intersection (Table 5). The recommendations to relocate the existing far-side southbound and northbound bus stops may have some impacts to the existing right-of-way and will require coordination with the Seminole Indian Tribe (property owner). A more detailed right-of-way analysis would be necessary prior to implementing these two recommendations.

Land Use	Historical Resources	Wetlands	Contamination Sites
Primarily public/semi-public, some retail/office	None	None	None

Table 5: Stirling Road Environmental Assessment

RIVERLAND ROAD

Preliminary Recommendations

The major focus for this intersection was to enhance the pedestrian infrastructure by improving visibility and tightening up the curb radii, which can easily be implemented under an existing FDOT resurfacing program and/or an existing FDOT push-button contract. The following recommendations were developed based on the existing baseline conditions and observations made during the field review:

- > Upgrade all crosswalks to high-emphasis
- > Verify intersection lighting and replace missing light pole from the northeast corner
- > Tighten up curb radius at the northwest corner

Preliminary Environmental Impact Assessment

The desktop GIS analysis revealed that there are no existing wetlands or historical resources within the influence area of the intersection. However, the GIS analysis did indicate that a contamination site (Figure 5) is in close proximity to the intersection. This active petroleum cleanup site on the northwest corner is not expected to be impacted by the proposed recommendations.

Multimodal Improvements CORRIDOR STUDY

Table 6: Riverland Road Environmental Assessment

Land Use	Historical Resources	Wetlands	Contamination Sites
Mixed with retail/office, vacant non-residential, and industrial	None	None	One active petroleum cleanup site

Figure 5: Riverland Road Contamination Sites

LAUDERHILL MALL AREA

Preliminary Recommendations

The major focus for this intersection was to improve the pedestrian infrastructure and overall safety for pedestrians. Similar to most of the other abbreviated study intersections, basic roadway and safety improvements are recommended, which can easily be implemented under an existing FDOT resurfacing program and/or an existing FDOT push-button contract. The following recommendations were developed based on the existing baseline conditions and observations made during the field review:

SR 7 Multimodal Improvements Corridor Study | *Project Development* www.ImproveSR7.org

- > Upgrade existing pedestrian push buttons and associated signage
- > Upgrade all crosswalks to high-emphasis
- > Relocate existing northbound bus stop across from the programmed transit transfer center

Preliminary Environmental Impact Assessment

The desktop GIS analysis revealed that there are no existing wetlands or historical resources within the influence area of the intersection (Table 7). However, the GIS analysis did indicate that five contamination sites (Figure 6) are in close proximity to these intersections. There is one pending petroleum cleanup site near the NW 16th St/SR 7 intersection, three pending petroleum cleanup sites near the NW 12th St/SR 7 intersection, and one pending dry cleaning site near the NW 12th St/SR 7 intersection. These contamination sites are not expected to be impacted by the proposed recommendations.

The recommendation to relocate the existing far-side northbound bus stop may have some impacts to the existing right-of-way and will need to be coordinated with BCT as they begin the construction of their new transit center.

Land Use	Historical Resources	Wetlands	Contamination Sites
NW 16 Street - Primarily Retail/Office, surrounding Industrial NW 12 Street - Primarily Retail/Office surrounding Residential/Recreation	None	None	Five NW 16 Street - One pending petroleum cleanup site NW 12 Street - Three pending petroleum cleanup sites, one pending dry cleaning site

Table 7: Lauderhill Mall Area Environmental Assessment

KIMBERLY BOULEVARD

Preliminary Recommendations

The major focus for this intersection was to upgrade the pedestrian infrastructure by improving visibility and overall safety. Similar to the other abbreviated study intersections, these recommendations can easily be implemented under an existing FDOT resurfacing program and/or an existing FDOT push-button contract. The following recommendations were developed based on the existing baseline conditions and observations made during the field review:

- > Upgrade existing pedestrian push buttons and associated signage
- > Upgrade all crosswalks to high-emphasis
- > Verify intersection lighting and replace missing light pole at the southwest corner
- > Fix damaged signal heads

PRELIMINARY ENVIRONMENTAL IMPACT ASSESSMENT

The desktop GIS analysis revealed that there are no existing wetlands or historical resources within the influence area of the intersection (Table 8). However, the GIS analysis did indicate that a contamination site (Figure 7) is in close proximity to the intersection. This active petroleum cleanup site on the southwest corner of the intersection is not expected to be impacted by the proposed recommendations.

Table 8: Kimberly Boulevard Environmental Assessment

Land Use	Historical Resources	Wetlands	Contamination Sites
Primarily Retail/Office surrounding Residential	None	None	One active petroleum cleanup site

Figure 7: Kimberly Boulevard Contamination Sites

SAMPLE ROAD/TURTLE CREEK DRIVE

Preliminary Recommendations

The major focus for this intersection was to improve the pedestrian infrastructure and convenience for transit passengers. High emphasis crosswalks for the intersection can easily be implemented under an existing FDOT resurfacing program and/or an existing FDOT push-button contract. The following recommendations were developed based on the existing baseline conditions and observations made during the field review:

- > Upgrade all crosswalks to high-emphasis
- > Relocate the existing far-side northbound bus stop closer to the intersection (to the beginning of the existing right turn lane) and provide a shelter

Preliminary Environmental Impact Assessment

The desktop GIS analysis revealed that there are no existing wetlands, contaminated sites, or historical resources within the influence area of the intersection (Table 9). The recommendation to relocate the existing far-side northbound bus stop closer to the intersection may have some impacts to the existing right-of-way, but this property is owned by Broward County.

Table 9: Sample Road/Turtle Creek Drive Environmental Assessment

Land Use	Historical Resources	Wetlands	Contamination Sites
Generally Retail/Office, with some Residential and Industrial	None	None	None

COMPATABILITY WITH ONGOING PROJECTS

A comparison of the recommended improvements to FDOT's plans for the ongoing SR 7 reconstruction project from south of Stirling Road to SW 26th Street (north of Hallandale Beach Blvd) was completed to ensure compatibility. Table 10 summarizes the results of that comparison, noting that many of the proposed recommendations already planned to be addressed through the SR 7 reconstruction project and all but one recommendation is compatible with the reconstruction plans. At Pembroke Road, this study recommends extending the right turn lane (at the northbound far-side bus stop location) down to the intersection, thus creating an open bus bay for a possible queue bypass lane application. According to FDOT's reconstruction plans, there is a new traditional bus bay programmed just north of Fletcher Street, which ultimately moves the existing bus stop further from the intersection.

SR 7 Multimodal Improvements Corridor Study | *Project Development* www.ImproveSR7.org

 Table 10: Compatibility of Recommendations with SR 7 Reconstruction Project

Intersection of SR 7 &:	Improvement	Compa
	Upgrade existing pedestrian push buttons and associated signage	Addressed in plans
	Upgrade all crosswalks to high-emphasis	Yes, need to include
	Relocate curb ramp at southwest corner	Addressed in plans
	Tighten radius at all corners – the southeast and northwest corners are top priority	Addressed in plans
Pembroke Rd	Construct a sidewalk on the west side of SR-7 north of Pembroke Rd	Addressed in plans
	Complete sidewalk network on west side of SR-7 south of Pembroke Rd	Addressed in plans
	Create an open bus bay for the existing far-side northbound bus stop. Currently, there is a 'standard' closed bus bay/right turn lane. Implement a queue bypass lane and provide a shelter	Conflicts with current pla Walgreen's driveway, thu intersection.
	Relocate the existing far-side southbound bus stop closer to the intersection and provide a shelter	Addressed in plans
	Upgrade existing pedestrian push buttons and associated signage	Addressed in plans
Hollywood Blvd	Upgrade all crosswalks to high-emphasis	Addressed in plans
	Consider implementing a queue jump treatment for the northbound and southbound directions	Yes, considering that far-s
	Upgrade existing pedestrian push buttons and associated signage	Addressed in plans
Johnson St	Upgrade all crosswalks to high-emphasis	Yes, need to include
	Relocate the existing far-side northbound bus stop closer to the intersection and provide a shelter	Compatible with plans
	Relocate the existing far-side westbound bus stop closer to the intersection and provide a shelter	Does not conflict with pla
	Upgrade all crosswalks to high-emphasis	Yes, need to include
	Verify intersection lighting	Yes, need to include
Sheridan St	Provide a shelter for the existing far-side northbound bus stop	Yes, need to include
	Relocate the existing far-side eastbound bus stop closer to the intersection and create an open bus bay, implement a queue bypass lane, and provide a shelter	Does not conflict with pla
Stirling Rd	Upgrade all crosswalks to high-emphasis	Yes, need to include
	Consider providing a shelter for all of the existing bus stops	Yes, need to include
	Relocate the existing far-side southbound bus stop closer to the intersection	Does not conflict with pla
	Relocate the existing far-side northbound bus stop closer to the intersection	Does not conflict with pla

tible with Reconstruction Plans?				
ans, which recommend a bus bay after the				
side bus bays are programmed				
ans				
ans				
ans				
ans				

FULL STUDY INTERSECTIONS

Six intersections were selected and categorized as full study intersections mainly because of their relatively high ranking of average number of daily BCT boardings in conjunction with their relatively high number of bicycle/pedestrian-related crashes when compared to the other nine intersections selected for Mobility Hub infrastructure improvements along the corridor. These full study intersections include a conceptual layout of hub infrastructure recommendations, a desktop environmental assessment, constructability review, VISSIM analysis, and development of planning-level cost estimates for the preliminary recommendations.

For each full study intersection, an assessment of the recommendations' impacts to the existing drainage system, existing utilities, and right-of-way was completed to determine if there are any fatal flaws for implementing these improvements. The right-of-way impacts are based on a combination of specific purpose surveys supplied by FDOT, GIS mapping, and aerials assuming right-of-way limits at the back of sidewalk. These right-of-way impact determinations are preliminary and should be verified with complete survey information when available. A detailed table that lists these impacts for all of the full study intersections is included in Appendix F.1.

The technical memorandum that summarizes the VISSIM analysis completed for all of the full study intersections is included in Appendix F.2.

Planning-level cost estimates were also developed for the recommended improvements. These estimates include costs for mobilization, maintenance of traffic, itemized pay items, a 20% contingency, and design and consulting fees. The itemized pay item costs are based on FDOT's most recent Long Range Estimates (LREs), which consider the cost for similar pay items for other local roadway projects. A detailed table that summarizes these cost estimates for all of the full study intersections is included in Appendix C. The cost estimates reflected in this section include an additional 20% CEI cost estimate that have been added to the costs included in Appendix F.3.

Prior to implementing any recommendation, Title 23 of the Code of Federal Regulations (CFR) requires a review of impacts to the environment; planned growth or land use; existing populations; natural, cultural, recreational, or historic resources; air, noise, or water quality; contamination sites; and travel patterns.

According to the October 2015 programmatic agreement for categorical exclusions (CE) between FHWA and FDOT, projects that do not cause major adverse impacts to the above mentioned areas and have no more than a minimal impact to right-of-way can be qualified as a Type 1 CE.

Appendix F.4 contains information sheets developed to summarize the improvements recommended at each location, as summarized in this technical appendix.

OVERVIEW OF POTENTIAL RECOMMENDATIONS

The major hub infrastructure improvements that are recommended mostly consisted of relocated bus stops in conjunction with a modified bus bay and special signal phasing treatments. The specific locations, designs, and overall operational considerations of these recommended relocated bus stops were discussed and coordinated with BCT and FDOT. Three basic designs were considered, including:

- > Near-side bus stops (consisting of a pedestrian/bus island and queue jump).
- > Far-side bus stops with an open bus bay (paired with a queue bypass lane).
- > Far-side bus stops with a closed bus bay (paired with a queue jump treatment).

Refer to Chapter 3-C, Section 3.11: Infrastructure Concepts for a detailed discussion of each of these improvement designs.

MIRAMAR PARKWAY/HALLANDALE BEACH BOULEVARD

Preliminary Recommendations

The major focus for this intersection was to bring the bus stops closer to the intersection. This can be coupled with bus bays to allow for queue jumps and queue bypass lanes proposed to improve transit operations. These recommendations require a more detailed analysis because of their potential impact on traffic, drainage, utilities, and right-of-way prior to implementation. Additionally, standard improvements to the existing pedestrian infrastructure are also recommended, which can be easily implemented under an existing FDOT resurfacing program and/or an existing FDOT push-button contract. The following recommendations were developed based on the existing baseline conditions and observations made during the field review and correlate with Figure 8:

- > Upgrade existing pedestrian push buttons and associated signage
- > **A** Relocate the existing far-side eastbound bus stop closer to the intersection
 - Include a shelter and an open bus bay
 - Implement a queue bypass lane
- B Create an open bus bay for the existing far-side northbound bus stop. Currently, there is a 'standard' closed bus bay.
 - Implement a queue bypass lane
- C Create an open bus bay for the existing far-side southbound bus stop. Currently, there is a 'standard' closed bus bay.
 - Implement a queue bypass lane
- > **D** Consider a queue jump treatment for the westbound movement
- > Tighten all curb radii where feasible.
 - Curb radii with an open bus bay (northeast, southeast, and southwest corners) were designed so right turning vehicles used the 2nd lane instead of the outside lane when merging into traffic. Note this design will likely require a design variance from FDOT and right turning movements on red should be disallowed. However, based on FHWA's Designing for Pedestrian Safety, this design is encouraged.

Figure 8: Miramar Parkway/Hallandale Beach Boulevard Preliminary Recommendations

SR7 Multimodal Improvements Corridor Study | *Project Development* www.ImproveSR7.org

Preliminary Environmental Impact Assessment

The desktop GIS analysis revealed that there are no existing wetlands or historical resources within the influence area of the intersection (Table 11). However, the GIS analysis did indicate that three contamination sites (Figure 9) are in close proximity to these intersections. There is a pending petroleum cleanup site on each corner of the intersection except the southeast corner. These contamination sites are not expected to be impacted by the proposed recommendations. The recommendations to construct an open bus bay for the existing far-side northbound and eastbound bus stops will impact the existing right-of-way, and is detailed further below in the constructability review.

Land Use	Historical Resources	Wetlands	Contamination Sites
Primarily retail/office, some vacant non-residential, surrounding residential with some industrial and institutional	None	None	Three active petroleum cleanup sites

Table 11: Miramar Parkway/Hallandale Beach Boulevard Environmental Assessment

Figure 9: Miramar Parkway/Hallandale Beach Boulevard Contamination Sites

Constructability Review

There are a number of impacts associated with the recommendations to implement queue bypass lanes at Miramar Parkway/Hallandale Beach Boulevard, many of which include relocation of existing infrastructure and some impacts to right-of-way. Table 12 summarizes these impacts.

Table 12: Miramar Parkway/Hallandale Beach Boulevard Constructability and Right-of-Way Review Summary

Direction	Recommendation	Constructability and ROW Issues	Constructability* Rating***	Coordination** Rating***
NB	Open Bus Bay	Traffic signal box relocation required	В	В
NB	Open Bus Bay	Potential traffic light relocation required	С	В
NB	Open Bus Bay	Right-of-way: maximum 5' ROW dedication tapering to existing ROW for approximately 150' on the east side of SR 7	-	-
SB	Open Bus Bay	Drainage inlet relocation required	В	Α
EB	Open Bus Bay	Utility pole relocation required	В	С
EB	Open Bus Bay	Electrical panel relocation required	A	В
EB	Open Bus Bay	Drainage inlet relocation required	В	Α
EB	Open Bus Bay	Traffic light pole relocation required	С	В
EB	Open Bus Bay	Utility lid relocation/adjustment required	Α	Α
EB	Open Bus Bay	Potential landscape impacts	Α	В
EB	Open Bus Bay	Right-of-way: maximum 15' ROW dedication tapering to existing ROW for approximately 140' on the south side of Miramar Parkway	-	-

* Coordination refers to the practicality of the proposed modification/demolition.

** Coordination refers to the potential difficulty with other stakeholders.

*** Rating based on engineering judgment. A = low cost/difficulty; B = moderate cost/difficulty; C = high cost/difficulty

VISSIM Analysis

A detailed VISSIM analysis was conducted to understand the recommended queue jump's and queue bypass lanes' impact to the existing traffic at the intersection. This analysis measured

impacts to delay, queuing, and overall level of service. Based on the simulation results, the average transit travel time at the signalized intersections decreased in general with the queue jump and queue bypass lanes improvements.

Table 13 summarizes the effects on bus travel time generated by the recommended transit operational improvements, as demonstrated through the VISSIM analysis.

Direction	Impact to Bus Travel Time (seconds)			
Direction	AM Peak Hour	PM Peak Hour		
Northbound	-9	-10		
Southbound	7	2		
Westbound	13	-16		
Eastbound	2	-5		

Table 13: Miramar Parkway/Hallandale Beach Boulevard VISSIM Analysis Results

Note: Negative time indicates decrease to bus travel time.

Based on the intersection level of service results, the average vehicle delay and queues at each approach of the intersection are about the same before and after the implementation of the queue jump and queue bypass lane improvements.

Planning-Level Cost Estimates

The existing eastbound bus stop's shelter will be reused when relocated, thereby not conflicting with any FTA requirements for prematurely exhausting the entire useful life of the bus shelter and needing to repay FTA monies used in the original shelter construction. The total estimated construction costs for the recommended improvements for the Miramar Parkway/Hallandale Beach Boulevard intersection is approximately \$296,000.

Next Steps: Implementation

Based on the initial review of estimated impacts for the proposed recommendations for the Miramar Parkway/Hallandale Beach Boulevard intersection, only minimal impacts to the existing right-of-way are anticipated. Therefore, a preliminary determination for a Type 1 CE appears adequate for the recommended improvements.

DAVIE BOULEVARD

Preliminary Recommendations

The major focus for this intersection was bringing the bus stops closer to the intersection. Various design recommendations were developed in order for queue jumps and queue bypass lanes to be implemented. Additionally, standard improvements to the existing pedestrian infrastructure are also recommended, which can be easily implemented under an existing FDOT resurfacing program and/or an existing FDOT push-button contract. The following recommendations were developed based on the existing baseline conditions and observations made during the field review and correlate to Figure 10:

- > Upgrade existing pedestrian push buttons and associated signage
- > Fixed damaged signal heads
- > **A** Relocate the existing near-side westbound bus stop closer to the intersection
 - o Incorporate a pedestrian/bus island and implement a queue jump
- B Relocate the existing far-side southbound bus stop closer to the intersection and create an open bus bay
 - Implement a queue bypass lane
- Extend the existing right turn lane to create an open bus bay for the far-side northbound bus stop
 - Implement a queue bypass lane
- > Include a shelter for all existing bus stops
- > Widen sidewalks along Davie Blvd west of SR 7 wherever possible in lieu of bike lanes
- > Tighten all curb radii where feasible.
 - Curb radii with an open bus bay (northeast and southwest corners) were designed so right turning vehicles used the 2nd lane instead of the outside lane when merging into traffic.

Figure 10: Davie Boulevard Preliminary Recommendations

SR 7 Multimodal Improvements Corridor Study | *Project Development* www.ImproveSR7.org

Multimodal Improvements CORRIDOR STUDY

Preliminary Environmental Impact Assessment

The desktop GIS analysis revealed that there are no existing wetlands, contaminated sites, or historical resources within the influence area of the intersection (Table 14). The recommendations to relocate the existing far-side southbound bus stop closer to the intersection with an open bus bay and incorporating a pedestrian/bus island for the existing near-side westbound bus stop will impact the existing right-of-way, and is detailed further below in the constructability review. These improvements will also require coordination with the existing private property owners and the City of Fort Lauderdale, who own right-of-way on the northeast corner.

Table 14: Davie Boulevard	Environmental	Assessment
---------------------------	---------------	------------

Land Use	Historical Resources	Wetlands	Contamination Sites
Mixed with retail/office, vacant non-residential, public/semi- public, industrial and other	None	None	None

Constructability Review

There are a number of impacts associated with the recommendations to implement queue bypass lanes, queue jumps, and the pedestrian/bus island at Davie Boulevard, many of which include relocation of existing infrastructure and impacts to existing right-of-way. Table 15 summarizes these impacts.

Directio	Recommendatio	Constructability and ROW	Constructability	Coordination*
n	n	Issues	* Rating***	* Rating***
NB	Open Bus Bay	Street light relocation required	В	В
NB	Open Bus Bay	Drainage inlet relocation required	В	Α
NB	Open Bus Bay	Utility pole relocations required	В	С
NB	Open Bus Bay	Potential traffic light relocation required	С	В
SB	Open Bus Bay	Drainage inlet modification required	В	Α
SB	Open Bus Bay	Fire hydrant relocation required	В	В
SB	Open Bus Bay	Street light relocation required	В	В
SB	Open Bus Bay	Potential traffic light relocation required	С	В
SB	Open Bus Bay	Traffic signal box relocation required	В	В
SB	Open Bus Bay	Right-of-way: maximum 10' ROW dedication tapering to existing ROW for approximately 90' on the west side of SR 7	-	-
WB	Pedestrian/Bus Island	Conflicts with landscaping	В	В
WB	Pedestrian/Bus Island	Fire hydrant relocation required	В	В
WB	Pedestrian/Bus Island	Drainage inlet relocation required	В	Α
WB	Pedestrian/Bus Island	Street light relocation required	В	В
WB	Pedestrian/Bus Island	Traffic light pole relocation required	С	В
WB	Pedestrian/Bus Island	Right-of-way: maximum 20' ROW dedication tapering to existing ROW for approximately 150' on the north side of Davie Blvd.	-	-

Table 15: Davie Boulevard Constructability Review Summary

* Coordination refers to the practicality of the proposed modification/demolition.

** Coordination refers to the potential difficulty with other stakeholders.

*** Rating based on engineering judgment. A = low cost/difficulty; B = moderate cost/difficulty; C = high cost/difficulty

VISSIM Analysis

Table 16 summarizes the effects on bus travel time generated by the recommended transit operational improvements, as demonstrated through the VISSIM analysis. Davie Boulevard's eastbound and southbound bus travel times improved the most of any intersection along SR 7 with the implementation of the queue bypass lanes.

Direction	Impact to Bus Travel Time (seconds)		
Direction	AM Peak Hour	PM Peak Hour	
Northbound	-12	-8	
Southbound	-45	-33	
Westbound	-37	-5	
Eastbound	-2	-52	

Table 16: Davie Boulevard VISSIM Analysis Results

Note: Negative time indicates decrease to bus travel time.

Based on the intersection level of service results, the average vehicle delay and queues at each approach of the intersection are about the same before and after the implementation of the queue jump and queue bypass lane improvements.

Planning-Level Cost Estimates

It is worth noting that the existing westbound bus stop's shelter will be reused when relocated, thereby not conflicting with any FTA requirements for prematurely exhausting the entire useful life of the bus shelter and needing to repay FTA monies. The total estimated construction costs for the recommended improvements for the Davie Boulevard intersection is approximately \$276,000.

Next Steps: Implementation

Based on the initial review of estimated impacts for the proposed recommendations for the Davie Boulevard intersection, only minimal impacts to the existing right-of-way are anticipated. As noted above, a detailed traffic analysis should be conducted prior to completing a Type 1 CE to ensure that impacts to traffic will be minimal when implementing the proposed recommendations. A preliminary determination appears to be that a Type 1 CE document is appropriate for this intersection improvement.

BROWARD BOULEVARD

Preliminary Recommendations

The major focus for this intersection was improving pedestrian-related infrastructure and bringing the bus stops closer to the intersection to make transfers easier and safer. Transit operations, overall speeds, and reliability can also be improved by implementing queue jumps and queue bypass lanes. Additionally, standard improvements to the existing pedestrian infrastructure are also recommended, which can be easily implemented under an existing FDOT resurfacing program and/or an existing FDOT push-button contract. The following recommendations were developed based on the existing baseline conditions and observations made during the field review and correlate to Figure 11:

- > Upgrade existing pedestrian push buttons and associated signage
- > Upgrade all crosswalks to high-emphasis
- > A Relocate existing near-side eastbound bus stop to immediate intersection with a pedestrian/bus island
 - Implement a queue jump application
 - Provide a shelter
- > **B** Create an open bus bay for the existing far-side westbound stop
 - Implement a queue bypass lane
- > C Consider a queue jump application for the existing far-side northbound bus stop
 - Works well considering the existing long right turn lane and the existing far-side stop is far enough from the intersection that it would not impact traffic or create conflicts with turning vehicles
- > Tighten all curb radii where feasible.
 - Curb radii with an open bus bay (northwest corner) were designed so right turning vehicles used the 2nd lane instead of the outside lane when merging into traffic.

R/W LINE QUEUE JUMP MOVEMENTS NORTHBOUND SR 7 EASTBOUND BROWARD BLVD. QUEUE BYPASS MOVEMENTS WESTBOUND BROWARD BLVD. EXISTING TO am 1140 D BAN R/W LINI С R/W LINE В BROWARD BLVD. E m Z 1H Α TO BE REMOVED GROVE EAST XISTING TO REMAI

Figure 11: Broward Boulevard Preliminary Recommendations

SR 7 Multimodal Improvements Corridor Study | *Project Development* www.ImproveSR7.org

Preliminary Environmental Impact Assessment

The desktop GIS analysis revealed that there are no existing wetlands, contaminated sites, or historical resources within the influence area of the intersection (Table 17). The recommendation to incorporate a pedestrian/bus island for the existing near-side eastbound bus stop will impact the existing right-of-way, and is detailed further below in the constructability review. Coordination with the City of Plantation will be required.

Table 17: Broward Boulevard Environmental Assessment

Land Use	Historical Resources	Wetlands	Contamination Sites
Primarily Retail/Office, surrounding Residential	None	None	None

Constructability Review

There are a number of impacts associated with the recommendations to implement queue bypass lanes, queue jumps, and the pedestrian/bus island at Broward Boulevard, which include relocation of existing infrastructure and impacts to right-of-way. Table 18 summarizes these impacts.

Direction	Recommendation	Constructability and ROW Issues	Constructability* Rating***	Coordination** Rating***
WB	Open Bus Bay	Street light relocation required	В	В
WB	Open Bus Bay	Drainage inlet relocation required	В	Α
EB	Pedestrian/Bus Island	Utility pole relocations required	В	С
EB	Pedestrian/Bus Island	Drainage inlet relocation required	В	A
EB	Pedestrian/Bus Island	Traffic light pole relocation required	С	В
EB	Pedestrian/Bus Island	Potential City of Plantation gateway signage and landscape relocations required	В	C
EB	Pedestrian/Bus Island	Right of way: maximum 15' ROW dedication tapering to existing ROW for approximately 140' on the south side of Broward Blvd.	-	-

Table 18: Broward Boulevard Constructability and Right-of-Way Review Summary

* Coordination refers to the practicality of the proposed modification/demolition.

** Coordination refers to the potential difficulty with other stakeholders.

*** Rating based on engineering judgment. A = low cost/difficulty; B = moderate cost/difficulty; C = high cost/difficulty

VISSIM Analysis

Table 19 summarizes the effects on bus travel time generated by the recommended transit operational improvements, as demonstrated through the VISSIM analysis.

Table 19: Broward Boulevard VISSIM Analysis Results

Direction	Impact to Bus Travel Time (seconds)		
Direction	AM Peak Hour	PM Peak Hour	
Northbound	-4	-3	
Southbound	3	-5	
Westbound	-3	-9	
Eastbound	-4	-1	

Note: Negative time indicates decrease to bus travel time.

Based on the intersection level of service results, the average vehicle delay and queues at each approach of the intersection are about the same before and after the implementation of the queue jump and queue bypass lane improvements.

Planning-Level Cost Estimates

It is worth noting that the existing eastbound bus stop's shelter will be reused when relocated, thereby not conflicting with any FTA requirements for prematurely exhausting the entire useful life of the bus shelter and needing to repay FTA monies. The total estimated construction costs for the recommended improvements for the Broward Boulevard intersection is approximately \$231,000.

Next Steps: Implementation

Based on the initial review of estimated impacts for the proposed recommendations for the Broward Boulevard intersection, only minimal impacts to the existing right-of-way are anticipated. Therefore, a preliminary determination indicates a Type 1 CE may be appropriate.

OAKLAND PARK BOULEVARD

Preliminary Recommendations

The major focus for this intersection was improving pedestrian-related infrastructure and bringing the bus stops closer to the intersection to make transfers easier and safer. Transit operations, overall speeds, and reliability can also be improved by implementing queue jumps and queue bypass lanes. Additionally, standard improvements to the existing pedestrian infrastructure are also recommended, which can be easily implemented under an existing FDOT resurfacing program and/or an existing FDOT push-button contract.

There is also an on-going AECOM study that is recommending improvements to the SR 7/Oakland Park Boulevard intersection through a Lauderdale Lakes Mobility Hub Vision Plan. This plan, among other improvement recommendations, proposes tighter curb radii, wider sidewalks, creating a bus staging area/multimodal transfer station on the southeast corner, enhanced bus stops, and improved pedestrian access. All of the recommendations produced by this SR 7 Multimodal Improvements Corridor Study augment and compliment those recommendations from the AECOM Mobility Hub Vision Plan for Lauderdale Lakes, except for our recommendation to relocate the existing far-side eastbound bus stop closer to the intersection. Due to right-of-way, utilities, and existing driveway conflicts, we recommended creating a traditional closed bus bay in order to support a queue jump application. The AECOM study proposed a traditional bus bay immediately on the southeast corner of the intersection, which supports their larger vision of a multi-modal facility site on this corner. The final location for this newly proposed bus bay should be based on the longer-term vision for this southeast corner and whether a multimodal hub facility/transfer center is feasible.

The following recommendations were developed based on the existing baseline conditions and observations made during the field review and correlate to Figure 12:

- > Upgrade existing pedestrian push buttons and associated signage
- > Upgrade all crosswalks to high-emphasis
- > Verify intersection lighting
 - Light pole at the northeast corner is missing the luminaire
- A Relocate existing near-side westbound bus stop to immediate intersection with a pedestrian/bus island
 - Implement a queue jump application
 - o Provide a shelter
 - **B** Create an open bus bay for the existing far-side southbound bus stop

SR 7 Multimodal Improvements Corridor Study | *Project Development* www.ImproveSR7.org

- Implement a queue bypass lane
- > **C** Create an open bus bay for the existing far-side northbound bus stop
 - Implement a queue bypass lane
- > **D** Relocate the existing far-side eastbound closer to the intersection
 - Include a traditional 'closed' bus bay and a shelter
 - Implement a queue jump application
- > Widen sidewalks wherever feasible in lieu of bike lanes
- > Tighten all curb radii where feasible.
 - Curb radii with an open bus bay (northeast and southwest corners) were designed so right turning vehicles used the 2nd lane instead of the outside lane when merging into traffic.

Figure 12: Oakland Park Boulevard Preliminary Recommendations

SR 7 Multimodal Improvements Corridor Study | *Project Development* www.ImproveSR7.org

Preliminary Environmental Impact Assessment

The desktop GIS analysis revealed that there are no existing wetlands or historical resources within the influence area of the intersection (Table 20). However, the GIS analysis did indicate that a contamination site (Figure 13) is in close proximity to this intersection. The active petroleum cleanup site on the northwest corner is not expected to be impacted by the proposed recommendations. The recommendations to relocate the existing far-side eastbound bus stop closer to the intersection with a closed bus bay and incorporating a pedestrian/bus island for the existing near-side westbound bus stop will impact the existing right-of-way, and is detailed further below in the constructability review. Coordination with private property owners and Broward County will be necessary to implement these recommendations.

Land Use	Historical Resources	Wetlands	Contamination Sites
Primarily Retail/Office surrounding Residential	None	None	One active petroleum cleanup site

Table 20: Oakland Park Boulevard Environmental Assessment

Figure 13: Oakland Park Boulevard Contamination Sites

Constructability Review

There are a number of impacts associated with the recommendations to implement queue bypass lanes, queue jumps, and the pedestrian/bus island at Oakland Park Boulevard, many of which include relocation of existing infrastructure and impacts to existing right-of-way. Table 21 summarizes these impacts.

Constructability* Coordination** Direction Recommendation **Constructability and ROW Issues** Rating*** Rating*** Potential street light relocation NB Open Bus Bay В В required Electrical panel relocation Α NB Open Bus Bay В required С SB **Open Bus Bay** Street light relocation required В Traffic light pole relocation С В SB Open Bus Bay required Utility lid Open Bus Bay modification/adjustment for Α SB Α traffic loads required EB Closed Bus Bay Utility pole relocations required В С Ground mounted transformer В В EB Closed Bus Bay relocation required Drainage inlet relocation EB Closed Bus Bay В Α required (or re-grading) EB **Closed Bus Bay** Payphone removal/relocation Α Α Potential fire hydrant relocation EB Closed Bus Bay В В required Right-of-way: maximum 15' ROW dedication tapering to existing ROW for approximately 180' on EB Closed Bus Bay the south side of Oakland Park Blvd. Pedestrian/Bus В В WB Street light relocation required Island Telecom/fiber box Pedestrian/Bus WB adjustment/replacement for Α Α Island traffic loads Pedestrian/Bus WB Private street light conflict В С Island Landscape conflicts: tree Pedestrian/Bus WB removal/replacement/ relocation В В Island required Traffic light pole relocation Pedestrian/Bus С WB В Island required Right-of-way: maximum 20' ROW dedication tapering to existing Pedestrian/Bus WB ROW for approximately 150' on Island the north side of Oakland Park

Table 21: Oakland Park Boulevard Constructability and Right-of-Way Review Summary

* Coordination refers to the practicality of the proposed modification/demolition.

Blvd.

** Coordination refers to the potential difficulty with other stakeholders.

*** Rating based on engineering judgment. A = low cost/difficulty; B = moderate cost/difficulty; C = high cost/difficulty

VISSIM Analysis

Table 22 summarizes the effects on bus travel time generated by the recommended transit operational improvements, as demonstrated through the VISSIM analysis.

Direction	Impact to Bus Travel Time (seconds)		
Direction	AM Peak Hour	PM Peak Hour	
Northbound	-11	-23	
Southbound	2	-5	
Westbound	-5	-10	
Eastbound	-6	0	

Table 22: Oakland Park Boulevard VISSIM Analysis Results

Note: Negative time indicates decrease to bus travel time.

Based on the intersection level of service results, the average vehicle delay and queues at each approach of the intersection are about the same before and after the implementation of the queue jump and queue bypass lane improvements.

Planning-Level Cost Estimates

It is worth noting that the existing eastbound and westbound bus stops' shelters will be reused when relocated, thereby not conflicting with any FTA requirements for prematurely exhausting the entire useful life of the bus shelter and needing to repay FTA monies. The total estimated construction costs for the recommended improvements for the Oakland Park Boulevard intersection is approximately \$237,000.

Next Steps: Implementation

Based on the initial review of estimated impacts for the proposed recommendations for the Oakland Park Boulevard intersection, only minimal impacts to the existing right-of-way are anticipated. Therefore, a preliminary determination was made that a Type 1 CE may be adequate for implementing improvements at this intersection.

Multimodal Improvements CORRIDOR STUDY

COMMERCIAL BOULEVARD

Preliminary Recommendations

The major focus for this intersection was improving pedestrian-related infrastructure and bringing the bus stops closer to the intersection to make transfers easier and safer. Transit operations, overall speeds, and reliability can also be improved by implementing queue jumps and queue bypass lanes. Additionally, standard improvements to the existing pedestrian infrastructure are also recommended, which can be easily implemented under an existing FDOT resurfacing program and/or an existing FDOT push-button contract. The following recommendations were developed based on the existing baseline conditions and observations made during the field review and correlate to Figure 14:

- > Upgrade existing pedestrian push buttons and associated signage
- > Remove obsolete utility pole from the southwest corner
- > A Relocate the existing far-side northbound bus stop closer to the intersection and create an open bus bay
 - o Implement a queue bypass lane
 - Include a shelter
- > **B** Create an open bus bay for the existing far-side eastbound bus stop
 - Implement a queue bypass lane
- > **C** Implement a pedestrian/bus island for the existing near-side westbound bus stop
 - Implement a queue jump application
 - Provide a shelter
- > Tighten all curb radii where feasible.
 - Curb radii with an open bus bay (northeast and southeast corners) were designed so right turning vehicles used the 2nd lane instead of the outside lane when merging into traffic.

Figure 14: Commercial Boulevard Preliminary Recommendations

Preliminary Environmental Impact Assessment

The desktop GIS analysis revealed that there are no existing wetlands or historical resources within the influence area of the intersection (Table 23). However, the GIS analysis did indicate that a contamination site (Figure 15) is in close proximity to this intersection. The active petroleum cleanup site on the northwest corner is not expected to be impacted by the proposed recommendations. The recommendations to create an open bus bay for the existing far-side eastbound bus stop and incorporating a pedestrian/bus island for the existing near-side westbound bus stop will impact the existing right-of-way, and is detailed further below in the constructability review. Coordination with private property owners will be necessary to implement these recommendations.

Land Use	Historical Resources	Wetlands	Contamination Sites
Primarily Retail/Office surrounding Residential	None	None	One active petroleum cleanup site

Table 23: Commercial Boulevard Environmental Assessment

Figure 15: Commercial Boulevard Contamination Sites

Constructability Review

There are a number of impacts associated with the recommendations to implement queue bypass lanes, queue jumps, and the pedestrian/bus island at Commercial Boulevard, which include relocation of existing infrastructure and impacts to right-of-way. Table 24 summarizes these impacts.

Directio	Recommendatio	Constructability and ROW	Constructability	Coordination*
n	n	lssues	* Rating***	* Rating***
		Landscape conflicts: tree		
NB	Open Bus Bay	removal/ replacement/	Α	Α
		relocation required		
NR	Onen Rus Rav	Existing swale inlet relocation	B	Δ
	open bus buy	required		
NB	Open Bus Bay	Relocation of Type 6 inlet	В	Δ
	open 240 24)	required	-	
EB	Open Bus Bay	Potential traffic light relocation	с	В
	open 240 24)	required	-	_
EB	Open Bus Bay	Street light conflict	В	Α
		Potential site grading		_
EB	Open Bus Bay	challenges with adjacent	Α	В
		property		-
EB	Open Bus Bay	Fire hydrant conflict	В	A
EB	Open Bus Bay	Potential relocation of the	Α	В
	. ,	Walgreens sign required		
		Right-of-way: maximum 15		
50		ROW dedication tapering to		
ER	Open Bus Bay	existing ROW for approximately	-	-
		75 on the south side of		
	Dodoctrian / Pus	Detential traffic light relocation		
WB	Peuestinail/Dus	required	С	В
	Istaliu Dodostrian/Pus	Releastion of red light compra		
WB	Peuestilail/Dus	required	В	В
	Dedestrian/Rus			
WB	reuestilari/bus	Potential landscape impacts	В	В
	Pedestrian/Bus	Modification of existing		
WB	Island	drainage inlet required	В	Α
	Pedestrian/Rus	Multiple utility pole relocations		
WB	Island	required	В	C
	1500110	Right-of-way: maximum 20'		
		ROW dedication tapering to		
WB	Pedestrian/Bus	existing ROW for approximately	-	-
	Island	140' on the north side of		
		Commercial Blvd.		

Table 24: Commercial Boulevard Constructability and Right-of-Way Review Summary

* Coordination refers to the practicality of the proposed modification/demolition.

** Coordination refers to the potential difficulty with other stakeholders. *** Rating based on engineering judgment. A = low cost/difficulty; B = moderate cost/difficulty; C = high cost/difficulty

VISSIM Analysis

Table 25 summarizes the effects on bus travel time generated by the recommended transit operational improvements, as demonstrated through the VISSIM analysis. Commercial Boulevard's eastbound and westbound bus travel times improved the most of any intersection with the queue jump and queue bypass lane applications along SR 7.

Direction	Impact to Bus Travel Time (seconds)		
Direction	AM Peak Hour	PM Peak Hour	
Northbound	-6	5	
Southbound	-7	1	
Westbound	-18	-29	
Eastbound	-39	-10	

Table 25: Commercial Boulevard VISSIM Analysis Results

Note: Negative time indicates decrease to bus travel time.

Based on the intersection level of service results, the average vehicle delay and queues at each approach of the intersection are about the same before and after the implementation of the queue jump and queue bypass lane improvements.

Planning-Level Cost Estimates

It is worth noting that the existing northbound bus stop's shelter will be reused when relocated, thereby not conflicting with any FTA requirements for prematurely exhausting the entire useful life of the bus shelter and needing to repay FTA monies. The total estimated construction costs for the recommended improvements for the Commercial Boulevard intersection is approximately \$302,000.

Next Steps: Implementation

Based on the initial review of estimated impacts for the proposed recommendations for the Commercial Boulevard intersection, only minimal impacts to the existing right-of-way are anticipated. Therefore, a preliminary determination has been made for completion of a Type 1 CE for these intersection improvements.

Multimodal Improvements CORRIDOR STUDY

ATLANTIC BOULEVARD

Preliminary Recommendations

The major focus for this intersection was improving pedestrian-related infrastructure and bringing the bus stops closer to the intersection to make transfers easier and safer. Transit operations, overall speeds, and reliability can also be improved by implementing queue jumps and queue bypass lanes. Additionally, standard improvements to the existing pedestrian infrastructure are also recommended, which can be easily implemented under an existing FDOT resurfacing program and/or an existing FDOT push-button contract. The following recommendations were developed based on the existing baseline conditions and observations made during the field review and correlate to Figure 16:

- > Install shrubs or pedestrian fencing on the west leg median
- > Add 'turning vehicles yield to pedestrians' sign adjacent to the right turn lane on the west leg
- > Verify intersection lighting and add light pole to the southeast corner
- > Split curb ramps where feasible
- B Reconstruct sidewalk at southwest corner to install new curb around existing signal pole foundation
- > C Provide a shelter for the existing far-side northbound bus stop
- D Relocate existing far-side westbound bus stop closer to intersection and provide a shelter (will require coordination with the private property owner)
- > **E** Relocate the existing far-side eastbound bus stop and create an open bus bay
 - Implement a queue bypass lane
 - Provide a shelter
- > **F** Consider a queue jump application for the northbound movement
 - Works well considering the existing long right turn lane and the existing far-side stop is far enough from the intersection which minimizes impact to traffic or conflicts with turning vehicles
- > Widen sidewalks wherever feasible in lieu of bike lanes
- > Tighten all curb radii where feasible. Curb radii with an open bus bay (southeast corner) were designed so right turning vehicles used the 2nd lane instead of the outside lane when merging into traffic.

Figure 16: Atlantic Boulevard Preliminary Recommendations

SR 7 Multimodal Improvements Corridor Study | *Project Development* www.ImproveSR7.org

Preliminary Environmental Impact Assessment

The desktop GIS analysis revealed that there are no existing wetlands, contaminated sites, or historical resources within the influence area of the intersection (Table 26). The recommendation to relocate the existing far-side eastbound bus stop closer to the intersection with an open bus bay will impact the existing right-of-way, and will require coordination with the private property owner.

Table 26: Atlantic Boulevard Environmental Assessment

Land Use	Historical Resources Wetlands		Contamination Sites	
Primarily Retail/Office surrounding Residential	None	None	None	

Constructability Review

There are a number of impacts associated with the recommendations to implement queue bypass lanes and queue jumps at Atlantic Boulevard, many of which include relocation of existing infrastructure and impacts to existing right-of-way. Table 27 summarizes these impacts.

Direction	Recommendation	Constructability and ROW Issues	Constructability * Rating***	Coordination* * Rating***
EB	Open Bus Bay	Large overhead utility line requiring pole relocation	с	С
NB	Open Bus Bay	Drainage inlet relocation required	В	A
SB	Open Bus Bay	Private access steps relocation required	В	С
EB	Open Bus Bay	Potential irrigation service modification required	Α	Α
EB	Open Bus Bay	Potential landscape impacts	Α	В
EB	Open Bus Bay	Potential private site lighting impacts	В	В
EB	Open Bus Bay	Right-of-way: dedication of 15' required for approximately 200' on the south side of Atlantic Blvd.	-	-
WB	Relocation of Bus Stop	Site triangle clearance for shopping center driveway	Α	Α
WB	Relocation of Bus Stop	Bus stop clearance from former gas station driveway or intersection	A	А
NW corner	Sidewalk Improvements	Potential telecom pedestal relocation required	Α	A
NW corner	Sidewalk Improvements	Potential traffic light relocation required	с	В
NW corner	Sidewalk Improvements	Potential re-grading for relocation of inlet required	В	Α
NW corner	Sidewalk Improvements	Right-of-way: corner chard dedication (Typical 25')	_	-
West Median	Shrubs for Ped. Dissuasion	Potential irrigation service required	Α	Α

Table 27: Atlantic Boulevard Constructability and Right-of-Way Review Summary

* Coordination refers to the practicality of the proposed modification/demolition.

** Coordination refers to the potential difficulty with other stakeholders.

*** Rating based on engineering judgment. A = low cost/difficulty; B = moderate cost/difficulty; C = high cost/difficulty

VISSIM Analysis

Table 28 summarizes the effects on bus travel time generated by the recommended transit operational improvements, as demonstrated through the VISSIM analysis. It should be noted that

the southbound and westbound bus travel times both increased by around five seconds during the AM and PM peak hours despite no recommended improvements.

Direction	Impact to Bus Travel Time (seconds)			
Direction	AM Peak Hour	PM Peak Hour		
Northbound	11	9		
Southbound	7	9		
Westbound	3	-1		
Eastbound	-22	9		

Table 28: Atlantic Boulevard VISSIM Analysis Results

Note: Negative time indicates decrease to bus travel time.

Based on the intersection level of service results, the average vehicle delay and queues at each approach of the intersection are about the same before and after the implementation of the queue jump and queue bypass lane improvements.

Planning-Level Cost Estimates

The total estimated construction costs for the recommended improvements for the Atlantic Boulevard intersection is approximately \$316,000.

Next Steps: Implementation

Based on the initial review of estimated impacts for the proposed recommendations for the Atlantic Boulevard intersection, only minimal impacts to the existing right-of-way are anticipated. Therefore, a preliminary determination for a Type 1 CE is appropriate for the recommended improvements.

CONCLUSION

All of the proposed recommendations for these SR 7 intersections were analyzed and assessed to determine what steps need to be taken for implementation. Based on the constructability review results and the VISSIM analysis results, a preliminary determination was made that a Type 1 CE will be needed to implement the recommendations for the identified intersections. FDOT owns and maintains SR 7 and would be responsible for designing, constructing, and funding these recommended improvements.

The next step in the implementation process is to prioritize these recommendations based on the level of stakeholder involvement/coordination and the estimated construction/design costs. FDOT would be able to take this analysis and begin the design process for the recommended improvements. The prioritization of these recommendations would help to group certain improvements into manageable, bid-able projects. They can also be implemented as part of FDOT's resurfacing program and/or "goes-with" projects. These implementation steps will be further refined in subsequent tasks.

APPENDIX F.1: CONSTRUCTABILITY REVIEW

STATE ROAD 7 Bus Queue Jump / Bypass Lane Constructability Review

Multimodal Improvements **CORRIDOR STUDY** More People • Create Jobs • Strengthen Communities

INTERSECTION	DIRECTION	SCOPE	CONSTRUCTABILITY ISSUES	CONSTRUCTABILITY	COORDINATION
				RATING*	RATING*
Atlantic Blvd.	NB	None	N/A	N/A	N/A
Atlantic Blvd.	SB	None	N/A	N/A	N/A
Atlantic Blvd.	EB	New Far Side Open Bus Bay	Large Overhead Utility Line requiring pole relocation	С	С
Atlantic Blvd.	EB	New Far Side Open Bus Bay	Drainage Inlet Relocation	В	А
Atlantic Blvd.	EB	New Far Side Open Bus Bay	Private Access Steps to be Relocated	В	С
Atlantic Blvd.	EB	New Far Side Open Bus Bay	Potential Irrigation Service Modification	А	А
Atlantic Blvd.	EB	New Far Side Open Bus Bay	Potential Landscape Impacts	А	В
Atlantic Blvd.	EB	New Far Side Open Bus Bay	Potential Private Site Lighting Impacts	В	В
Atlantic Blvd.	WB	Relocation of Bus Stop	Site Triangle Clearance for Shopping Center Driveway	А	А
Atlantic Blvd.	WB	Relocation of Bus Stop	Bus Stop Clearance from former Gas Station Driveway or Intersection	А	А
Atlantic Blvd.	NW Corner	Sidewalk Improvements	Potential telecomm pedestral relocation	А	А
Atlantic Blvd.	NW Corner	Sidewalk Improvements	Potential Traffic Light Relocation	С	В
Atlantic Blvd.	NW Corner	Sidewalk Improvements	Potential Re-Grading for relocation of inlet	В	А
Atlantic Blvd.	E/W Median	Shrubs for Ped. Disuasion	Potential irrigation service required	А	А
Commericial Blvd.	NB	New Far Side Open Bus Bay	Landscape conflicts (tree removal/replacement or relocation)	А	А
Commericial Blvd.	NB	New Far Side Open Bus Bay	Existing swale inlet relocation	В	А
Commericial Blvd.	NB	New Far Side Open Bus Bay	Relocation of Type 6 inlet required	В	А
Commericial Blvd.	SB	None	N/A	N/A	N/A
Commericial Blvd.	EB	New Far Side Open Bus Bay	Potential traffic light relocation	С	В
Commericial Blvd.	EB	New Far Side Open Bus Bay	Street light conflict	В	А
Commericial Blvd.	EB	New Far Side Open Bus Bay	Fire hydrant conflict	В	А
Commericial Blvd.	EB	New Far Side Open Bus Bay	Potential site grading challenges with adjacent property	А	В
Commericial Blvd.	EB	New Far Side Open Bus Bay	Potential relocation of "Walgreens" sign	А	В
Commericial Blvd.	WB	Pedestrian Bus Island	Potential traffic light relocation	С	В

STATE ROAD 7 Bus Queue Jump / Bypass Lane Constructability Review

Multimodal Improvements CORRIDOR STUDY Move People • Create Jobs • Strengthen Communities

INTERSECTION	DIRECTION	SCOPE	CONSTRUCTABILITY ISSUES	CONSTRUCTABILITY RATING*	COORDINATION RATING*
Commericial Blvd.	WB	Pedestrian Bus Island	Mulitple utility pole relocations	В	С
Commericial Blvd.	WB	Pedestrian Bus Island	Relocation of red light camera	В	В
Commericial Blvd.	WB	Pedestrian Bus Island	Potential Landscape Impacts	В	В
Commericial Blvd.	WB	Pedestrian Bus Island	Modification of existing drainage inlet	В	А
Oakland Park Blvd.	NB	New Far Side Open Bus Bay	Potential street light relocation	В	В
Oakland Park Blvd.	NB	New Far Side Open Bus Bay	Electircal panel relocation	А	В
Oakland Park Blvd.	SB	New Far Side Open Bus Bay	Street light and traffic light relocation	С	В
Oakland Park Blvd.	SB	New Far Side Open Bus Bay	Utiltiy lid adjustment/modification for traffic loads	А	А
Oakland Park Blvd.	EB	New Closed Bus Bay	Utility Pole relocations	В	С
Oakland Park Blvd.	EB	New Closed Bus Bay	Ground mounted transformer relocation	В	В
Oakland Park Blvd.	EB	New Closed Bus Bay	Drainage inlet relocation (or re-grading)	В	А
Oakland Park Blvd.	EB	New Closed Bus Bay	Payphone removal/relocation	А	Α
Oakland Park Blvd.	EB	New Closed Bus Bay	Potential fire hydrant relocation	В	В
Oakland Park Blvd.	WB	Pedestrian Bus Island	Street light relocation	В	В
Oakland Park Blvd.	WB	Pedestrian Bus Island	Telecom/fiber box adjustment/replacement for traffic loads	А	А
Oakland Park Blvd.	WB	Pedestrian Bus Island	Private street light conflict	В	С
Oakland Park Blvd.	WB	Pedestrian Bus Island	Landscape conflicts (tree removal/replacement or relocation)	В	В
Oakland Park Blvd.	WB	Pedestrian Bus Island	Traffic light relocation	С	В
W Broward Blvd.	NB	None	N/A	N/A	N/A
W Broward Blvd.	SB	None	N/A	N/A	N/A
W Broward Blvd.	WB	New Far Side Open Bus Bay	Street light relocation	В	В
W Broward Blvd.	WB	New Far Side Open Bus Bay	Drainage inlet relocation	В	А
W Broward Blvd.	EB	Pedestrian Bus Island	Utility pole relocations	В	С
W Broward Blvd.	EB	Pedestrian Bus Island	Drainage inlet relocation	В	А
W Broward Blvd.	EB	Pedestrian Bus Island	Traffic light pole relocation	С	В

STATE ROAD 7 Bus Queue Jump / Bypass Lane Constructability Review

Multimodal Improvements **CORRIDOR STUDY** Move People • Create Jobs • Strengthen Communities

INTERSECTION	DIRECTION	SCOPE		CONSTRUCTABILITY	COORDINATION
	DIRECTION			RATING*	RATING*
W Broward Blvd.	EB	Pedestrian Bus Island	Potential entryway signage and landscape relocations	В	С
Davie Blvd.	NB	New Far Side Open Bus Bay	Street light relocations	В	В
Davie Blvd.	NB	New Far Side Open Bus Bay	Drainage inlet relocation	В	А
Davie Blvd.	NB	New Far Side Open Bus Bay	Utility pole relocations	В	С
Davie Blvd.	NB	New Far Side Open Bus Bay	Potential Traffic Light Relocation	С	В
Davie Blvd.	SB	New Far Side Open Bus Bay	Drainage inlet modfication	В	А
Davie Blvd.	SB	New Far Side Open Bus Bay	Fire hydrant relocation	В	В
Davie Blvd.	SB	New Far Side Open Bus Bay	Street light relocation	В	В
Davie Blvd.	SB	New Far Side Open Bus Bay	Potential Traffic Light Relocation	С	В
Davie Blvd.	SB	New Far Side Open Bus Bay	Traffic Signal box relocation	В	В
Davie Blvd.	EB	None	N/A	N/A	N/A
Davie Blvd.	WB	Pedestrian Bus Island	Landscape conflicts	В	В
Davie Blvd.	WB	Pedestrian Bus Island	Fire hydrant relocation	В	В
Davie Blvd.	WB	Pedestrian Bus Island	Drainage inlet relocation	В	А
Davie Blvd.	WB	Pedestrian Bus Island	Street light relocation	В	В
Davie Blvd.	WB	Pedestrian Bus Island	Traffic light pole relocation	С	В
Miramar Parkway	NB	New Far Side Open Bus Bay	Traffic signal box relocation	В	В
Miramar Parkway	NB	New Far Side Open Bus Bay	Potential Traffic Light Relocation	С	В
Miramar Parkway	SB	New Far Side Open Bus Bay	Drainage inlet relocation	В	А
Miramar Parkway	EB	New Far Side Open Bus Bay	Utility pole relocation	В	С
Miramar Parkway	EB	New Far Side Open Bus Bay	Electircal panel relocation	А	В
Miramar Parkway	EB	New Far Side Open Bus Bay	Drainage inlet relocation	В	А
Miramar Parkway	EB	New Far Side Open Bus Bay	Traffic light pole relocation	С	В
Miramar Parkway	EB	New Far Side Open Bus Bay	Utility lid relocation/adjustment	А	А
Miramar Parkway	EB	New Far Side Open Bus Bay	Potential Landscape Impacts	А	В
Miramar Parkway	WB	None	N/A	N/A	N/A

* Rating based on engineering judgement - A indicates low cost/difficulty; B indicates moderate cost/difficulty; C indicates high cost/difficulty

Constructability refers to the practicality of the proposed modificiation/demolition. Coordination refers to the potential diffiucity with other stakeholders.

STATE ROAD 7 Bus Queue Jump / Bypass Lane Right-of-Way Impact Review

Multimodal Improvements CORRIDOR STUDY

INTERSECTION	DIRECTION	SCOPE	ESTIMATED RIGHT-OF-WAY IMPACTS*
W Atlantic Blvd.	NB	None	N/A
W Atlantic Blvd.	SB	None	N/A
W Atlantic Plud	ED	Now Far Side Open Rus Pay	ROW dedication of approximately 15' required for approximately 200' on South
vv Aliantic Divu.	LD	New Far Side Open bus bay	side of Atlantic Blvd.
W Atlantic Blvd.	WB	Relocation of Bus Stop	None
W Atlantic Blvd.	NW Corner	Sidewalk Improvements	Corner Chord Dedication (Typical 25')
Commericial Blvd.	NB	New Far Side Open Bus Bay	None
Commericial Blvd.	SB	None	N/A
Commericial Blvd	FR	New Far Side Open Bus Bay	Maximum approx. 15' ROW dedication tapering to existing ROW for approx. 75'
commercial biva.	LD	New rai Side Open bus bay	on South side of Commercial Blvd.
Commericial Blvd	\//B	Pedestrian Bus Island	Maximum approx. 20' ROW dedication tapering to existing ROW for approx.
Commericial bivu.	VVD		140' on the North side of Commercial Blvd.
W Oakland Park Blvd.	NB	New Far Side Open Bus Bay	None
W Oakland Park Blvd.	SB	New Far Side Open Bus Bay	None
W Oakland Park Blud	FD	New Closed Bus Bay	Maximum approx. 15' ROW dedication tapering to existing ROW for approx.
	LD	New closed bus bay	180' on the South side of Oakland Park Blvd.
W Oakland Park Blvd	W/B	Pedestrian Bus Island	Maximum approx. 20' ROW dedication tapering to existing ROW for approx.
	VVD		150' on the North side of Oakland Park Blvd.
W Broward Blvd.	NB	None	N/A
W Broward Blvd.	SB	None	N/A
W Broward Blvd.	WB	New Far Side Open Bus Bay	None
W Broward Blyd	FR	Pedestrian Bus Island	Maximum approx. 15' ROW dedication tapering to existing ROW for approx.
	LD		140' on the South side of Broward Blvd.
Davie Blvd.	NB	New Far Side Open Bus Bay	None
Davie Blud	SB	New Far Side Open Bus Bay	Maximum approx. 10' ROW dedication tapering to existnig ROW for approx. 90'
Davie Diva.	50	New rai side open bus bay	on the West side of SR-7
Davie Blvd.	EB	None	N/A
Davie Blvd	WB	Pedestrian Bus Island	Maximum approx. 20' ROW dedication tapering to existing ROW for approx.
Davie Diva.	VVD	Peuestrian Bus Island	150' on the North side of Davie Blvd.

STATE ROAD 7 Bus Queue Jump / Bypass Lane Right-of-Way Impact Review

INTERSECTION	DIRECTION	SCOPE	ESTIMATED RIGHT-OF-WAY IMPACTS*
Miramar Darkway		New Fee Cide Onen Due Dev	Maximum approx. 5' ROW dedication tapering to existing ROW for approx. 150'
Miramar Parkway NB	New Far Side Open Bus Bay	on the East side of SR-7	
Miramar Parkway	SB	New Far Side Open Bus Bay	None
Miramar Parkway EB	EB	New Far Side Open Bus Bay	Maximum approx. 15' ROW dedication tapering to existing ROW for approx.
			140' on the South side of Miramar Parkway
Miramar Parkway	WB	None	N/A

*Existing Right-of-Way (ROW) based on combination of specific purpose surveys supplied by FDOT, GIS mapping, and aerials assuming ROW limits at the back of sidewalk. These ROW impact determinations are preliminary and shall be verified with complete survey information when available.

APPENDIX F.2: VISSIM ANALYSIS TECHNICAL MEMORANDUM

MEMORANDUM

Date: April 13, 2016

To: Demian Miller, Principal, Tindale Oliver

From: Sheng Yang, P.E., PTOE, CTS Engineering, Inc.

Project: SR-7 IN BROWARD COUNTY SOUTH OF SAMPLE ROAD TRANSPORTATION IMPROVEMENT PLAN DEVELOPMENT

Introduction

In 2014, Broward Metropolitan Planning Organization (MPO) will initiate a planning study for SR-7 south of Sample Road to Miami/Broward County line. The will focus on enhancing the quality of life and improving safety and mobility through short and long-term strategies. The study is anticipated to propose transportation improvements regarding land use, transit, roadway, biking and walking, Florida Department of Transportation (FDOT) has programmed a design project in fiscal year 2014/2015 and would need to assess implement feasible improvements.

CTS Engineering, Inc. got the request from the Broward MPO Corridor Study Team to perform an existing conditions traffic analysis comparing the before and after of queue jumps and queue bypass lanes implementation. The six intersections that were analyzed include:

- SR 7 & Atlantic Boulevard,
- SR 7 & commercial Boulevard,
- SR 7 & Oakland Park Boulevard,
- SR 7 & Broward Boulevard,
- SR 7 & Davie Boulevard
- SR 7 & Miramar Parkway.

The VISSIM micro-simulation model for this study. The VISSIM model will be used to evaluate existing traffic operation and transit alternatives along the corridor. The report provides a description of the calibration methodology of the existing model. The aggregated calibration

statistics are provided that the models are calibrated. The calibrated VISSIM model will be used for the scenario testing after the implementation of the transit improvements.

The temporal limits of the models include AM peak hour from 7:00AM to 9:00AM, and PM peak hour from 4:00PM to 6:00PM. The model input is one hour volume. Each model includes a one-hour warm-up period. The traffic data includes the vehicle turning movement count of each intersection, transit passengers at each bus stop along SR 7 and the 5 major east-west arterials, and pedestrian volume at each intersection.

Traffic Count

Turning movement counts, 24-hour traffic volume counts, and pedestrian data were obtained and reviewed along the corridor. Following is a summary of each type of count data.

The turning movement counts were performed during the AM peak hours (6:30-9:30 AM) and during the PM peak hours (4:00-7:00 PM) for the following intersections on Wednesday, May 13 and Thursday, 14, 2015:

- SR 7 & Atlantic Boulevard.
- SR 7 & Commercial Boulevard.
- SR 7 & Oakland Park Boulevard.
- SR 7 & Broward Boulevard,
- SR 7 & Davie Boulevard.

For SR 7 at Miramar Parkway, the turning movement counts were collected on Tuesday, March 8, 2016.

Pedestrian counts were collected by at the same study intersections as the turning movement counts. These counts were taken during the weekday AM and PM peak hours on a typical weekday.
Broward County Transit (BCT) route 18, 19, and 441 Breeze are the bus routes operating at SR 7. BCT route 22, 25, 72, 52, and 84 are the west-east bus route along the west-east corridors. The bus schedules were obtained from Broward County Transit website.

VISSIM Models

There are three major elements in the VISSIM network: geometric, traffic counts, and signal timing.

The geometric features included are the number of lanes and turn lanes for the roadways in the VISSIM network. A scaled Broward County aerial photograph was used for this study. Lane configurations were initially taken from the aerial photographs. The lane configurations were confirmed or revised based on field observations.

The actual turning movement volumes from the date collection are used in VISSIM simulation model. Each intersection is considered as isolated intersection since the intersections are far away from each other. There is no volume adjustment.

Traffic signal timing plan were obtained from Broward County Traffic Division. The signal timing data information was fed into VISSIM network. Traffic signals are coded as Ring Barrier Controller (RBC) for all five signalized intersections.

Both the car following and lane change models in VISSIM use an extensive range of parameters. The urban driving behavior were used in VISSIM models.

BCT route and bus stop locations are obtained from Broward County Transit.

• Calibration

The models were calibrated in accordance with the FHWA guidelines for micro-simulation model calibration criteria. Average run results from 10 simulation runs with different random seeds were used to compare with calibration targets for AM and PM peak periods.

For the VISSIM models, there is no travel time needs to be calibrated. The turning movement volumes from VISSIM models were compared to actual turning movement count. The calibration results are based on average from ten runs with different random seeds. A summary of the turning movement count (GEH) statistics for AM and PM peak hours are presented in **Table 1**.

	AM Pe	ak Hour	PM Pea	k Hour
GEH	Counts	Percentage	Counts	Percentage
GEH < 2	60	100%	60	100%
GEH < 5	0	0%	0	0%
GEH >5	0	0%	0	0%

Table 1 Peak Hour Turning Movement Summary

The delay and level of service for each intersection turning movement are summarized in **Tables** 2 and 3.

			0			-		T			
			Mov	ement		-	Appr	oach	Inters	ection	
Intersection	Direction	Volumes	Delay	LOS	Queue	Max Queue	Delay	LOS	Delay	LOS	
	EBL	363	61	E	68	245					
	EBT	1059	45	D	98	338	45.2	D			
	EBR	152	10	A	6	85					
	NBL	138	64	E	47	221					
	NBT	1139	40	D	95	403	36.2	D			
SR 7 at Atlantic Blvd	NBR	391	16	В	25	265			41.6	D	
	WBL	278	62	E	53	183			41.0	5	
	WBT	635	43	D	63	239	47.7	D			
	WBR	76	37	D	66	246					
	SBL	218	62	E	76	324					
	SBT	1118	36	D	91	378	39.6	D			
	SBR	100	32	С	103	401					
	EBL	206	66	E	43	157				D	
	EBT	1469	39	D	117	524	38.1	D			
	EBR	288	15	В	15	158					
	NBL	410	59	E	74	264					
	NBT	824	44	D	75	283	44.3	D			
SR 7 at Commercial	NBR	208	15	В	14	138			/2 1		
Blvd	WBL	164	62	E	34	132		37.7 D		42.1	
	WBT	866	36	D	67	272	37.7				
	WBR	74	9	Α	2	69					
	SBL	395	58	E	69	248					
	SBT	1241	49	D	126	440	47.3	D			
	SBR	162	11	В	8	106					
	EBL	249	62	E	48	186					
	EBT	1118	41	D	95	357	41.0	D			
	EBR	179	12	В	10	110					
	NBL	380	58	E	69	245					
	NBT	1020	40	D	84	318	40.0	D			
SR 7 at Oakland Park	NBR	229	12	В	14	166			116	р	
Blvd	WBL	255	60	E	49	176			41.0	U	
	WBT	993	40	D	82	309	41.0	D			
	WBR	136	10	В	6	93					
	SBL	299	60	E	55	196					
	SBT	1174	42	D	102	376	5 44.2 D				
	SBR	74	10	В	3	80					

Table 2 Existing AM Peak Hour LOS Summary

			Mov	ement	Appr	oach	Intersection			
Intersection	Direction	Volumes	Delay	LOS	Queue	Max Queue	Delay	LOS	Delay	LOS
	EBL	408	65	E	80	283				
	EBT	1297	44	D	120	542	42.6	D		
	EBR	424	17	В	30	258				
	NBL	395	62	E	79	276				
	NBT	844	44	D	78	299	44.2	D		
SR 7 at Broward Blud	NBR	230	14	В	16	174			13.0	D
	WBL	228	65	E	49	184			43.0	U
	WBT	780	35	С	57	252	38.3	D		
	WBR	122	9	А	6	96				
	SBL	300	64	E	60	209				
	SBT	873	48	D	88	323	46.4	D		
	SBR	192	12	В	10	110				
	EBL	318	43	D	38	158				
	EBT	723	32	С	45	182	32.0	С		C
	EBR	167	11	В	15	138				
	NBL	213	35	D	24	124				
	NBT	868	35	D	63	242	31.9	С		
SR 7 at Miramar	NBR	157	10	В	8	106			29.6	
Pkwy	WBL	155	44	D	23	112	32.1 C	25.0	Ĩ	
	WBT	361	33	С	29	125				
	WBR	98	10	Α	6	98				
	SBL	121	47	D	10	55				
	SBT	833	21	С	40	216	22.9	С		
	SBR	110	8	A	5	105				
	EBL	98	52	D	20	89				
	EBT	616	44	D	79	302	34.4	С		
	EBR	260	5	A	2	90				
	NBL	185	50	D	31	126				
	NBT	921	28	C	52	234	23.1	С		
Davie Blvd	NBR	470	3	A	0	53			29.5	C
	WBL	348	48	D	53	209			_0.0	-
	WBT	354	34	С	36	183	31.9	С		
	WBR	204	1	Α	0	0				
	SBL	220	50	D	38	164	4 31.7 C			
	SBT	1270	29	С	73	346				
	SBR	20	1	А	0	8				

 Table 2 Existing AM Peak Hour LOS Summary (Cont'd)

	Movement					Appro	ach	Intersection				
Intersection	Direction	Volumes	Delay	LOS	Queue	Max Queue	Delay	LOS	Delay	LOS		
	EBL	341	63	Е	67	245						
	EBT	744	48	D	76	284	50.0	D				
	EBR	79	11	В	8	91						
	NBL	210	65	Е	75	326						
	NBT	1154	37	D	90	389	36.4	D				
SR 7 at Atlantic	NBR	290	11	В	11	146			45 4			
Blvd	WBL	478	66	Е	90	297			45.4	D		
	WBT	929	47	D	96	358	52.7	D				
	WBR	61	42	D	99	365						
	SBL	154	66	Е	54	246						
	SBT	1348	43	D	132	508	44.6 I	44.6 D				
	SBR	107	39	D	146	531						
	EBL	314	62	Е	61	218	37.6					
	EBT	1013	38	D	78	329		37.6	D			
	EBR	358	16	В	24	232						
	NBL	395	60	Е	71	251						
	NBT	988	45	D	90	351	44.9	D				
SR 7 at	NBR	175	12	В	9	110			12.9	D		
Commercial Blvd	WBL	265	63	Е	52	182	42.0 D	42.8				
	WBT	1278	41	D	114	428		42.0 D				
	WBR	148	10	В	5	134						
	SBL	275	62	Е	55	197						
	SBT	1153	49	D	117	418	47.0	D				
	SBR	187	13	В	12	131						
	EBL	264	60	Е	49	175						
	EBT	794	43	D	73	277	43.2	D				
	EBR	140	12	В	8	99						
	NBL	555	77	Е	135	403						
	NBT	1081	39	D	88	342	48.5	D				
SR 7 at Oakland	NBR	154	10	А	7	104			45 1	D		
Park Blvd	WBL	359	60	Е	67	247			43.1	ע		
	WBT	1072	42	D	92	329	43.2	D				
-	WBR	168	11	В	8	106						
	SBL	329	59	Е	59	210	44.8 D	44.8 D	, , , , , , , , , , , , , , , , , , , ,	0		
	SBT	1206	44	D	109	401						
	SBR	106	13	В	6	89						

Table 3 Existing PM Peak Hour LOS Summary

				Approach		Intersection									
Intersection	Direction	Volumes	Delay	LOS	Queue	Max Queue	Delay	LOS	Delay	LOS					
	EBL	325	67	E	68	233									
	EBT	913	41	D	79	312	42.6	D							
	EBR	219	12	В	12	130									
	NBL	487	65	Е	99	356									
	NBT	922	47	D	92	342	48.1	D							
SR 7 at	NBR	203	12	В	11	122			45.0	р					
Broward Blvd	WBL	327	67	E	68	236			43.9	D					
	WBT	1331	44	D	124	448	44.9	D							
	WBR	165	11	В	8	112									
	SBL	446	65	E	86	305									
	SBT	821	49	D	84	304	47.9	D							
	SBR	280	17	В	21	185									
	EBL	259	48	D	39	149									
	EBT	686	34	С	50	203	32.8	С							
	EBR	220	11	В	13	123									
	NBL	429	44	D	52	230									
	NBT	973	27	С	52	259	29.4	С							
SR / at Miramar	NBR	165	9	А	7	101			27 /	C					
Pkwv	WBL	234	48	D	35	137			52.4	C					
,	WBT	640	34	С	46	186	34.2	С							
	WBR	128	10	В	7	107									
	SBL	161	53	D	15	68		4.6 C							
	SBT	811	37	D	70	258	34.6 C								
	SBR	201	11	В	12	124									
	EBL	98	52	D	20	83									
	EBT	480	44	D	79	295	39.6	D							
	EBR	97	5	Α	2	91									
	NBL	371	51	D	31	130									
	NBT	1202	28	С	67	451	33.2	С							
Davie Blvd	NBR	306	32	С	83	451			33.6	C					
	WBL	379	47	D	52	214			55.0						
	WBT	776	34	С	18	174	31.7	С							
	WBR	248	1	Α	0	37									
-	SBL	259	51	D	39	159									
	SBT	892	28	С	36	324	33.0 C	33.0 C	33.0 C	33.0 C	1 33.0 C	33.0 C	33.0		
	SBR	26	23	С	2	59									

Table 3 Existing PM Peak Hour LOS Summary (Cont'd)

• Queue Jump and Queue Bypass

In order to improve the transit operation at these intersections, queue jump and queue bypass are recommended. Queue jump or bypass lanes are methods by which buses can bypass traffic queues at intersections. The bus would enter a right turn lane or a separate lane developed for buses only between the through and right turn lane and then stop on the near-side of the intersection. A queue jump means that a separate, short bus signal phase would be provided to allow the bus an early green to move into the through lane ahead of traffic. A queue bypass is different from a queue jump that a queue bypass does not require any special signalization to operate. The transit vehicle merely goes through the intersection using the right turn lane and into the open bus bay of the far side of the intersection, as illustrated in the following figure.

Queue Bypass lane continued through an intersection

The queue jump and queue bypass locations were obtained from the recommended locations by HNTB Corporation. The recommended queue jump and queue bypass locations are shown in **Table 4**:

Intersection	Queue Jump Locations	Queue Bypass Locations
SR 7 at Atlantic Boulevard	NB	EB
SR 7 at Commercial Boulevard	WB	EB, NB
SR 7 at Oakland Park Boulevard	WB, EB	NB, SB
SR 7 at Broward Boulevard	EB, NB	WB
SR 7 at Davie Boulevard	WB	NB, SB
SR 7 at Miramar Parkway	WB	NB, SB, EB

Table 4 Recommended Queue Jump and Queue Bypass Locations

A comparison of the bus travel time before and after the queue jump and queue bypass improvement are presented in **Table 5**.

Discution		AM (seconds)			PM (seconds)	
Direction	Existing	with Improvements	Difference	Existing	with Improvements	Difference
SR 7 NB at Atlantic Blvd	82	93	11	89	98	9
SR 7 SB at Atlantic Blvd	79	86	7	95	104	9
Atlantic Blvd EB	116	95	-22	78	87	9
Atlantic Blvd WB	99	103	3	116	115	-1
SR 7 NB Commercial Blvd	132	126	-6	122	128	5
SR 7 SB Commercial Blvd	144	137	-7	135	136	1
Commercial Blvd EB	118	78	-39	106	96	-10
Commercial Blvd WB	115	97	-18	116	86	-29
SR 7 NB at Oakland Park Blvd	115	104	-11	120	98	-23
SR 7 SB at Oakland Park Blvd	112	114	2	116	110	-5
Oakland Park Blvd EB	107	101	-6	105	105	0
Oakland Park Blvd WB	107	102	-5	102	91	-10
SR 7 NB at Broward Blvd	76	80	4	78	75	-3
SR 7 SB at Broward Blvd	106	109	3	104	99	-5
Broward Blvd EB	114	111	-4	109	108	-1
Broward Blvd WB	69	66	-3	79	70	-9
SR 7 NB at Miramar Pkwy	85	76	-9	79	68	-10
SR 7 SB at Miramar Pkwy	65	72	7	85	87	2
Miramar Pkwy EB	80	87	7	84	79	-5
Miramar Pkwy WB	95	109	13	95	79	-16
SR 7 NB at Davie Blvd	101	89	-12	92	84	-8
Davie Blvd EB	141	139	-2	111	59	-52
Davie Blvd WB	93	56	-37	146	141	-5
SR 7 SB at Davie Blvd	110	65	-45	92	59	-33

Table 5 Bus Travel Time Comparison – Before and After

The delay and level of service for each intersection turning movement are summarized in **Tables** 6 and 7.

Tert and the set			Move	ement			Appro	ach	Intersec	tion		
Intersection	Direction	Volumes	Delay	LOS	Queue	Max Queue	Delay	LOS	Delay	LOS		
	EBL	363	62	Е	68	242						
	EBT	1059	46	D	51	355	46.0	D				
	EBR	152	10	В	6	108						
	NBL	138	63	Е	46	219						
	NBT	1139	40	D	55	392	36.6	D				
SR 7 at Atlantic	NBR	391	16	В	28	303			42.0	р		
Blvd	WBL	278	62	Е	53	187			42.0	D		
	WBT	635	44	D	65	236	48.5	D				
	WBR	76	38	D	68	244						
	SBL	218	63	Е	77	321	39.3 D					
	SBT	1118	35	D	89	366						
	SBR	100	32	С	101	388						
	EBL	206	65	Е	43	153	38.6 D					
	EBT	1469	39	D	63	540		D				
	EBR	288	15	В	15	201						
	NBL	410	61	Е	76	263						
	NBT	824	43	D	40	295	44.0	D				
SR 7 at	NBR	208	15	В	15	211			40.0	D		
Commercial Blvd	WBL	164	63	Е	35	132	37.8 D		42.2			
	WBT	866	36	D	34	271		37.8 D				
	WBR	74	9	А	2	109						
	SBL	395	60	Е	71	242						
	SBT	1241	48	D	125	436	47.5	D				
	SBR	162	11	В	8	111						
	EBL	249	62	Е	48	199						
	EBT	1118	42	D	50	370	41.8	D				
	EBR	179	13	В	11	165						
	NBL	380	58	Е	68	241						
	NBT	1020	40	D	45	325	40.2	D				
SR 7 at Oakland	NBR	229	13	В	17	246			41.0	р		
Park Blvd	WBL	255	59	Е	48	172			41.8	D		
	WBT	993	40	D	42	301	40.9	D				
	WBR	136	11	В	7	156						
	SBL	299	59	Е	55	207	44.2 D					
	SBT	1174	42	D	52	400		44.2 D	44.2 D			
	SBR	74	12	В	6	154						

Table 6 AM Peak Hour LOS Summary – Bus Improvement

				Approach		Interse	ction						
Intersection	Direction	Volumes	Delay	LOS	Queue	Max Queue	Delay	LOS	Delay	LOS			
	EBL	408	64	E	79	280							
	EBT	1297	46	D	66	596	43.3	D					
	EBR	424	17	В	25	239							
	NBL	395	61	E	77	293							
	NBT	844	44	D	42	293	44.2	D					
SR 7 at	NBR	230	15	В	16	213			12 7	D			
Broward Blvd	WBL	228	64	Е	48	183			45.2	D			
	WBT	780	35	С	29	247	38.0	D					
	WBR	122	10	В	8	144							
	SBL	300	65	E	60	226							
	SBT	873	48	D	87	322	46.3	D					
	SBR	192	11	В	7	99							
	EBL	318	43	D	37	156							
	EBT	723	32	С	24	190	31.8	С					
	EBR	167	10	В	10	145							
	NBL	213	34	С	24	117							
	NBT	868	34	С	31	239	30.9	С					
SR 7 at	NBR	157	10	Α	7	160			20.1	c			
Pkwy	WBL	155	43	D	23	105			29.1	C			
,	WBT	361	33	С	15	122	31.6	С					
	WBR	98	9	Α	3	76							
	SBL	121	46	D	9	55							
	SBT	833	21	С	20	199	22.4	С					
	SBR	110	8	А	2	143							
	EBL	98	52	D	20	83							
	EBT	616	44	D	79	295	34.4	С					
	EBR	260	5	Α	2	91							
	NBL	185	51	D	31	130							
	NBT	921	28	С	67	451	31.9	С					
Davia Blud	NBR	470	32	С	83	451			20.0	C			
Davie bivu	WBL	348	47	D	52	214			50.9	C			
	WBT	354	34	С	18	174	31.6	С					
-	WBR	204	1	Α	0	37							
	SBL	220	51	D	39	159							
	SBT	1270	23	С	36	324	27.1 C	27.1 C	27.1 C	27.1 C	27.1 C		
	SBR	20	28	С	2	23							

 Table 6 AM Peak Hour LOS Summary – Bus Improvement (Cont'd)

• • •			Move	ement		-	Appro	ach	Intersec	tion		
Intersection	Direction	Volumes	Delay	LOS	Queue	Max Queue	Delay	LOS	Delay	LOS		
	EBL	341	65	Е	69	268						
	EBT	744	49	D	39	290	51.3	D				
	EBR	79	11	В	8	115						
	NBL	210	64	Е	73	308						
	NBT	1154	39	D	50	385	37.3	D				
SR 7 at Atlantic	NBR	290	12	В	17	286			46.0	D		
Blvd	WBL	478	65	Е	88	299			40.0	D		
	WBT	929	47	D	96	352	52.9	D				
	WBR	61	45	D	100	360						
	SBL	154	67	Е	56	254						
	SBT	1348	42	D	131	501	44.6 D	D				
	SBR	107	39	D	145	523						
	EBL	314	63	Е	62	264	37.8 D					
	EBT	1013	38	D	44	333		37.8	37.8	D		
	EBR	358	15	В	21	211						
	NBL	395	61	Е	72	256						
	NBT	988	44	D	48	333	45.0	D				
SR 7 at	NBR	175	12	В	11	202			42.0	D		
Commercial Blvd	WBL	265	64	Е	52	182			42.9			
	WBT	1278	41	D	59	416	42.0	D	42.0 D			
	WBR	148	11	В	9	290						
	SBL	275	62	Е	55	200						
	SBT	1153	49	D	117	417	47.1	D				
	SBR	187	14	В	13	158						
	EBL	264	61	Е	50	171						
	EBT	794	44	D	38	285	44.1	D				
	EBR	140	12	В	9	142						
	NBL	555	78	Е	135	395						
	NBT	1081	40	D	46	325	49.0	D				
SR 7 at Oakland	NBR	154	10	В	9	179			15 (D		
Park Blvd	WBL	359	59	Е	65	235			43.0	D		
	WBT	1072	43	D	48	343	43.5	D				
-	WBR	168	11	В	7	146]					
	SBL	329	60	Е	60	201	45.2 D	45.2 D				
	SBT	1206	44	D	56	400			D			
	SBR	106	13	В	7	156						

Table 7 PM Peak Hour LOS Summary – Bus Improvement

			Approach		Interse	ction										
Intersection	Direction	Volumes	Delay	LOS	Queue	Max Queue	Delay	LOS	Delay	LOS						
	EBL	325	67	Е	69	248										
	EBT	913	43	D	43	322	43.5	D								
	EBR	219	12	В	15	227										
	NBL	487	65	Е	100	345										
	NBT	922	48	D	49	318	48.7	D								
SR 7 at	NBR	203	13	В	15	218			46.5	П						
Broward Blvd	WBL	327	68	Е	70	254										
	WBT	1331	43	D	62	464	45.1	D								
	WBR	165	12	В	8	127										
	SBL	446	66	Е	87	291										
	SBT	821	49	D	86	313	48.6	D								
	SBR	280	18	В	20	199										
	EBL	259	52	D	42	163										
	EBT	686	31	С	24	197	32.0	С								
	EBR	220	10	В	10	150										
	NBL	429	49	D	59	236										
	NBT	973	31	С	32	274	33.7	С								
SR / at Miramar	NBR	165	9	Α	6	162			25 5	П						
Pkwv	WBL	234	52	D	38	157			55.5							
,,	WBT	640	40	D	28	201	38.8	D								
	WBR	128	11	В	6	127										
	SBL	161	59	E	17	81]							
	SBT	811	41	D	41	287	38.6	D								
	SBR	201	13	В	15	252										
	EBL	98	54	D	20	90										
	EBT	480	43	D	61	245	38.2	D								
	EBR	97	1	Α	0	8										
	NBL	371	50	D	55	213										
	NBT	1202	30	С	60	337	34.0	С								
Davia Blvd	NBR	306	30	С	47	313			35.0	C						
Davie bivu	WBL	379	51	D	60	232			55.0	C						
	WBT	776	38	D	44	384	35.4	D								
	WBR	248	2	Α	0	51										
	SBL	259	52	D	44	180										
	SBT	892	30	С	27	233	34.2 C	34.2 C	34.2 C	3 34.2 C	3 34.2 C	3 34.2 C	34.2 C	34.2 C		
	SBR	26	1	Α	0	0										

 Table 7 PM Peak Hour LOS Summary – Bus Improvement (Cont'd)

• Simulation Summary

Based on the simulation results, the average transit travel time at the signalized intersections decreased in general with the queue jump and queue bypass improvements.

- ✓ After the improvement, at the intersection of SR 7 at Atlantic Boulevard, the northbound transit travel time increased around 10 seconds during AM and PM peak hours after queue jump improvement. Based on the field review, it is due to the long queue on the right turn lane. The southbound transit travel time also increased around 8 seconds. The eastbound travel time will decrease 22 seconds during AM peak hour and increased 9 seconds during PM peak hour with the queue bypass improvement. The westbound transit travel time are about the same during AM and PM peak hours.
- ✓ At SR 7 at Commercial Boulevard intersection, the westbound bus travel time decreased 18 seconds and 29 seconds during AM and PM peak hours after the queue jump improvement. After queue improvement, the transit eastbound travel time decreased 39 seconds and 10 seconds during AM and PM peak hour, respectively. The northbound and southbound travel time decreased 6 seconds and 7 seconds during AM peak hour. The northbound and southbound travel time are about the same before and after the improvements during PM peak hour.
- ✓ At intersection of SR 7 at Oakland Park Boulevard, the eastbound and westbound bus travel time decreased from 5 seconds to 10 seconds during AM and PM peak hours with queue jump improvement. The northbound bound bus travel time decreased 11 and 23 seconds during AM and PM peak hour, respectively after the queue bypass improvement. The southbound bus travel time are about the same before and after the queue bypass during AM peak hour. During PM peak hour, the southbound bus travel time decreased 5 seconds.
- ✓ At intersection of SR 7 at Broward Boulevard, the eastbound and northbound bus travel time are about the same before and after the queue jump. The westbound bus travel time decreased 3 and 9 seconds during AM and PM peak hour with queue bypass, respectively. The southbound transit travel time increased 3 seconds during AM peak hour and decreased 5 seconds during PM peak hour.
- ✓ At SR 7 at Davie Boulevard intersection, the westbound bus travel time decreased 37 seconds during AM peak hour and decreased 5 seconds during PM peak hour after queue jump improvement. With the queue bypass improvement, the northbound bus travel time decreased

around 10 seconds during AM and PM peak hour with queue bypass. The southbound and eastbound bus travel time decreased 45 seconds during AM peak hour and 33 seconds during PM peak hour before and after queue bypass.

✓ At SR 7 at Miramar Parkway intersection, the westbound bus travel time increased 13 seconds during AM peak hour and decreased 16 seconds during PM peak hour after queue jump improvement. With the queue bypass improvement, the northbound bus travel time decreased around 10 seconds during AM and PM peak hour with queue bypass. The southbound and eastbound bus travel time are about the same before and after queue bypass.

Based on the intersection level of service results, the average vehicle delay and queues at each intersection are about the same before and after the queue jump and queue bypass improvements.

APPENDIX F.3: PRELIMINARY ENGINEER'S OPINION OF PROBABLE CONSTRUCTION COSTS

It should be noted that the costs previously summarized in the report include a 20% Construction Engineering Inspections (CEI) added to the subtotal of the construction and contingency costs summarized in this appendix.

Bus Queue Jump / Bypass Lane Preliminary Engineer's Opinion of Probable Construction Costs (EOPCC) By Intersection

ITEM	DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	TOTAL
INTERSECTIO	ON AT ATLANTIC BLVD.	-			
0101 1	MOBILIZATION	1	LS	8%	\$13,150.89
0102150 2	MAINTENANCE OF TRAFFIC	1	LS	10%	\$16,438.61
N/A	GENERAL CONDITIONS (BONDS AND INSURANCE)	1	LS	5%	\$8,219.31
0000300 1	PAVEMENT MARKING AND SIGNING	1	LS	2.5%	\$520.97
0110 4 1	REMOVAL OF EXISTING CONCRETE SIDEWALK	200	SY	\$7.08	\$1,416.00
0522 1	CONCRETE SIDEWALK 4"	310	SY	\$34.51	\$10,698.10
0522 3	BUS BOARDING PAD - CONCRETE	7	SY	\$73.90	\$517.30
0334 1 15	ASPHALT 2-1/2" (STRUCTURAL & FRICTION COURSE)	210	SY	\$18.27	\$3,836.70
0160 4	COMPACTED/STABILIZED SUBGRADE UP TO 12" (TYPE B)	210	SY	\$4.70	\$987.00
285711	12" LIMEROCK BASE (OPTIONAL BASE GROUP 11)	210	SY	\$16.04	\$3,368.40
0334 1 15	ASPHALT 1 3/4" - 2" (FOR RESURFACING OF MILLED ASPHALT)	740	SY	\$11.11	\$8,221.40
0327 70 5	MILLING EXISTING ASPHALT (1-5/8" AVG DEPTH)	740	SY	\$5.98	\$4,425.20
0425 11	MODIFY EXISTING DRAINAGE STRUCTURE	1	EA	\$2,843.02	\$2,843.02
0425 2 42	MANHOLE (4' DIA.)	1	EA	\$4,611.12	\$4,611.12
0110 3	REMOVAL OF EXISTING BUS STOP BENCH	2	EA	\$221.90	\$443.80
0751 35 13	BUS STOP SHELTER	2	EA	\$47,375.00	\$94,750.00
0400 0 11	GRAVITY WALL - CONCRETE	20	CY	\$540.28	\$10,805.60
0641 2 80	UTILITY POLE RELOCATION*	1	EA	\$2,162.50	\$2,162.50
0649 38000	TRAFFIC LIGHT RELOCATION	1	EA	\$14,500.00	\$14,500.00
0580 2 5	LANDSCAPE- TREE RELOCATION >5'	1	EA	\$800.00	\$800.00
0999 25	CONTINGENCY	1	LS	20%	\$40,543.18
0 30 1	DESIGN & CONSULTING FEES	1	LS	15%	\$36,488.87
				SUBTOTAL	\$279,748

INTERSECTION AT COMMERCIAL BLVD.						
0101 1	MOBILIZATION	1	LS	8%	\$12,457.34	
0102150 2	MAINTENANCE OF TRAFFIC	1	LS	10%	\$15,571.68	
N/A	GENERAL CONDITIONS (BONDS AND INSURANCE)	1	LS	5%	\$7,785.84	

Bus Queue Jump / Bypass Lane Preliminary Engineer's Opinion of Probable Construction Costs (EOPCC) By Intersection

ITEM	DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	TOTAL
0000300 1	PAVEMENT MARKING AND SIGNING	1	LS	2.5%	\$2,095.29
0110 4 1	REMOVAL OF EXISTING CONCRETE SIDEWALK	480	SY	\$7.08	\$3,398.40
0522 1	CONCRETE SIDEWALK 4"	690	SY	\$34.51	\$23,811.90
0522 3	BUS BOARDING PAD - CONCRETE	7	SY	\$73.90	\$517.30
0334 1 15	ASPHALT 2-1/2" (STRUCTURAL & FRICTION COURSE)	510	SY	\$18.27	\$9,317.70
0160 4	COMPACTED/STABILIZED SUBGRADE UP TO 12" (TYPE B)	510	SY	\$4.70	\$2,397.00
285711	12" LIMEROCK BASE (OPTIONAL BASE GROUP 11)	510	SY	\$16.04	\$8,180.40
0334 1 15	ASPHALT 1 3/4" - 2" (FOR RESURFACING OF MILLED ASPHALT)	3,740	SY	\$11.11	\$41,551.40
0327 70 5	MILLING EXISTING ASPHALT (1-5/8" AVG DEPTH)	3,740	SY	\$5.98	\$22,365.20
0751 35 31	RELOCATION OF EXISTING BUS SHELTER	2	EA	\$4,119.40	\$8,238.80
0670 5500	RED LIGHT CAMERA RELOCATION*	1	EA	\$5,000.00	\$5,000.00
0425 11	MODIFY EXISTING DRAINAGE STRUCTURE	1	EA	\$2,843.02	\$2,843.02
0641 2 80	REMOVAL OF EXISTING UTILITY POLE*	2	EA	\$3,447.22	\$6,894.44
0715 4400	LIGHT POLE RELOCATION*	1	EA	\$2,641.99	\$2,641.99
0649 38000	TRAFFIC LIGHT RELOCATION	1	EA	\$14,500.00	\$14,500.00
1644800	FIRE HYDRANT RELOCATION*	1	EA	\$3,259.26	\$3,259.26
0580 2 5	LANDSCAPE- TREE RELOCATION >5'	1	EA	\$800.00	\$800.00
0999 25	CONTINGENCY	1	LS	20%	\$38,725.39
0 30 1	DESIGN & CONSULTING FEES	1	LS	15%	\$34,852.85
				SUBTOTAL	\$267,205

INTERSECTION AT OAKLAND PARK BLVD.						
0101 1	MOBILIZATION	1	LS	8%	\$11,051.97	
0102150 2	MAINTENANCE OF TRAFFIC	1	LS	10%	\$13,814.97	
N/A	GENERAL CONDITIONS (BONDS AND INSURANCE)	1	LS	5%	\$6,907.48	
0000300 1	PAVEMENT MARKING AND SIGNING	1	LS	2.5%	\$1,896.81	
0110 4 1	REMOVAL OF EXISTING CONCRETE SIDEWALK	590	SY	\$7.08	\$4,177.20	
0522 1	CONCRETE SIDEWALK 4"	580	SY	\$34.51	\$20,015.80	
0522 3	BUS BOARDING PAD - CONCRETE	7	SY	\$73.90	\$517.30	

Bus Queue Jump / Bypass Lane Preliminary Engineer's Opinion of Probable Construction Costs (EOPCC) By Intersection

ITEM	DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	TOTAL
0334 1 15	ASPHALT 2-1/2" (STRUCTURAL & FRICTION COURSE)	600	SY	\$18.27	\$10,962.00
0160 4	COMPACTED/STABILIZED SUBGRADE UP TO 12" (TYPE B)	600	SY	\$4.70	\$2,820.00
285711	12" LIMEROCK BASE (OPTIONAL BASE GROUP 11)	600	SY	\$16.04	\$9,624.00
0334 1 15	ASPHALT 1 3/4" - 2" (FOR RESURFACING OF MILLED ASPHALT)	3,070	SY	\$11.11	\$34,107.70
0327 70 5	MILLING EXISTING ASPHALT (1-5/8" AVG DEPTH)	3,070	SY	\$5.98	\$18,358.60
0751 35 31	RELOCATION OF EXISTING BUS STOP SHELTER	2	EA	\$4,119.40	\$8,238.80
0715 4400	LIGHT POLE RELOCATION*	3	EA	\$2,641.99	\$7,925.97
0649 38000	TRAFFIC LIGHT RELOCATION	1	EA	\$14,500.00	\$14,500.00
1644800	FIRE HYDRANT RELOCATION*	1	EA	\$3,259.26	\$3,259.26
0425 11	MODIFY EXISTING DRAINAGE STRUCTURE	1	EA	\$2,843.02	\$2,843.02
0580 2 5	LANDSCAPE- TREE RELOCATION >5'	1	EA	\$800.00	\$800.00
0999 25	CONTINGENCY	1	LS	20%	\$34,364.18
0 30 1	DESIGN & CONSULTING FEES	1	LS	15%	\$30,927.76
				SUBTOTAL	\$237,113

INTERSECTION	ON AT BROWARD BLVD.				
0101 1	MOBILIZATION	1	LS	8%	\$10,745.22
0102150 2	MAINTENANCE OF TRAFFIC	1	LS	10%	\$13,431.52
N/A	GENERAL CONDITIONS (BONDS AND INSURANCE)	1	LS	5%	\$6,715.76
0000300 1	PAVEMENT MARKING AND SIGNING	1	LS	2.5%	\$1,926.44
0110 4 1	REMOVAL OF EXISTING CONCRETE SIDEWALK	330	SY	\$7.08	\$2,336.40
0522 1	CONCRETE SIDEWALK 4"	420	SY	\$34.51	\$14,494.20
0522 3	BUS BOARDING PAD - CONCRETE	7	SY	\$73.90	\$517.30
0334 1 15	ASPHALT 2-1/2" (STRUCTURAL & FRICTION COURSE)	350	SY	\$18.27	\$6,394.50
0160 4	COMPACTED/STABILIZED SUBGRADE UP TO 12" (TYPE B)	350	SY	\$4.70	\$1,645.00
285711	12" LIMEROCK BASE (OPTIONAL BASE GROUP 11)	350	SY	\$16.04	\$5,614.00
0334 1 15	ASPHALT 1 3/4" - 2" (FOR RESURFACING OF MILLED ASPHALT)	3,710	SY	\$11.11	\$41,218.10
0327 70 5	MILLING EXISTING ASPHALT (1-5/8" AVG DEPTH)	3,710	SY	\$5.98	\$22,185.80
0751 35 31	RELOCATION OF EXISTING BUS STOP SHELTER	1	EA	\$4,119.40	\$4,119.40

Bus Queue Jump / Bypass Lane Preliminary Engineer's Opinion of Probable **Construction Costs (EOPCC) By Intersection**

ITEM	DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	TOTAL
0700 1	PLANTATION GATEWAY SIGN	1	EA	\$10,000.00	\$10,000.00
0715 4400	LIGHT POLE RELOCATION*	1	EA	\$2,641.99	\$2,641.99
0649 38000	TRAFFIC LIGHT RELOCATION	1	EA	\$14,500.00	\$14,500.00
0641 2 80	UTILITY POLE RELOCATION*	1	EA	\$2,162.50	\$2,162.50
0425 11	MODIFY EXISTING DRAINAGE STRUCTURE	2	EA	\$2,843.02	\$5,686.04
0580 2 5	LANDSCAPE- TREE RELOCATION >5'	1	EA	\$800.00	\$800.00
0999 25	CONTINGENCY	1	LS	20%	\$33,426.83
0 30 1	DESIGN & CONSULTING FEES	1	LS	15%	\$30,084.15
				SUBTOTAL	\$230,645

INTERSECTION AT DAVIE BLVD.					
0101 1	MOBILIZATION	1	LS	8%	\$12,883.65
0102150 2	MAINTENANCE OF TRAFFIC	1	LS	10%	\$16,104.57
N/A	GENERAL CONDITIONS (BONDS AND INSURANCE)	1	LS	5%	\$8,052.28
0000300 1	PAVEMENT MARKING AND SIGNING	1	LS	2.5%	\$2,070.59
0110 4 1	REMOVAL OF EXISTING CONCRETE SIDEWALK	720	SY	\$7.08	\$5,097.60
0522 1	CONCRETE SIDEWALK 4"	800	SY	\$34.51	\$27,608.00
0522 3	BUS BOARDING PAD - CONCRETE	7	SY	\$73.90	\$517.30
0334 1 15	ASPHALT 2-1/2" (STRUCTURAL & FRICTION COURSE)	730	SY	\$18.27	\$13,337.10
0160 4	COMPACTED/STABILIZED SUBGRADE UP TO 12" (TYPE B)	730	SY	\$4.70	\$3,431.00
285711	12" LIMEROCK BASE (OPTIONAL BASE GROUP 11)	730	SY	\$16.04	\$11,709.20
0334 1 15	ASPHALT 1 3/4" - 2" (FOR RESURFACING OF MILLED ASPHALT)	3,180	SY	\$11.11	\$35,329.80
0334 1 15	MILLING EXISTING ASPHALT (1-5/8" AVG DEPTH)	3,180	SY	\$5.98	\$19,016.40
0110 3	REMOVAL OF EXISTING BUS STOP BENCH	2	EA	\$221.90	\$443.80
0751 35 31	RELOCATION OF EXISTING BUS STOP SHELTER	1	EA	\$4,119.40	\$4,119.40
1644800	FIRE HYDRANT RELOCATION*	2	EA	\$3,259.26	\$6,518.52
0715 4400	LIGHT POLE RELOCATION*	3	EA	\$2,641.99	\$7,925.97
0649 38000	TRAFFIC LIGHT RELOCATION	1	EA	\$14,500.00	\$14,500.00
0641 2 80	UTILITY POLE RELOCATION*	1	EA	\$2,162.50	\$2,162.50
0425 11	MODIFY EXISTING DRAINAGE STRUCTURE	3	EA	\$2,843.02	\$8,529.06

Bus Queue Jump / Bypass Lane Preliminary Engineer's Opinion of Probable Construction Costs (EOPCC) By Intersection

ITEM	DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	TOTAL
0580 2 5	LANDSCAPE- TREE RELOCATION >5'	1	EA	\$800.00	\$800.00
0999 25	CONTINGENCY	1	LS	20%	\$40,031.35
0 30 1	DESIGN & CONSULTING FEES	1	LS	15%	\$36,028.21
				SUBTOTAL	\$276,216

*Compensability to be verified by Utility Owner and FDOT

INTERSECTION AT MIRAMAR PKWY.						
0101 1	MOBILIZATION	1	LS	8%	\$12,196.89	
0102150 2	MAINTENANCE OF TRAFFIC	1	LS	10%	\$15,246.11	
N/A	GENERAL CONDITIONS (BONDS AND INSURANCE)	1	LS	5%	\$7,623.06	
0000300 1	PAVEMENT MARKING AND SIGNING	1	LS	2.5%	\$2,032.79	
0110 4 1	REMOVAL OF EXISTING CONCRETE SIDEWALK	700	SY	\$9.19	\$6,433.00	
0522 1	CONCRETE SIDEWALK 4"	650	SY	\$34.51	\$22,431.50	
0522 3	BUS BOARDING PAD - CONCRETE	7	SY	\$73.90	\$517.30	
0334 1 15	ASPHALT 2-1/2" (STRUCTURAL & FRICTION COURSE)	700	SY	\$18.27	\$12,789.00	
285711	12" LIMEROCK BASE (OPTIONAL BASE GROUP 11)	700	SY	\$16.04	\$11,228.00	
0160 4	COMPACTED/STABILIZED SUBGRADE UP TO 12" (TYPE B)	700	SY	\$4.70	\$3,290.00	
0334 1 15	ASPHALT 1 3/4" - 2" (FOR RESURFACING OF MILLED ASPHALT)	3,160	SY	\$11.11	\$35,107.60	
0327 70 5	MILLING EXISTING ASPHALT (1-5/8" AVG DEPTH)	3,160	SY	\$5.98	\$18,896.80	
0751 35 31	RELOCATION OF EXISTING BUS STOP SHELTER	1	EA	\$4,119.40	\$4,119.40	
0649 38000	TRAFFIC LIGHT RELOCATION	2	EA	\$14,500.00	\$29,000.00	
0641 2 80	UTILITY POLE RELOCATION*	1	EA	\$2,162.50	\$2,162.50	
0425 11	MODIFY EXISTING DRAINAGE STRUCTURE	2	EA	\$2,843.02	\$5,686.04	
0580 2 5	LANDSCAPE- TREE RELOCATION >5'	1	EA	\$800.00	\$800.00	
0999 25	CONTINGENCY	1	LS	20%	\$37,912.00	
0 30 1	DESIGN & CONSULTING FEES	1	LS	15%	\$34,120.80	
				SUBTOTAL	\$261,593	

Bus Queue Jump / Bypass Lane Preliminary Engineer's Opinion of Probable Construction Costs (EOPCC) By Intersection

ITEM DESCRIPTION

QUANTITY UNIT UNIT PRICE

TOTAL

TOTAL ESTIMATED CONSTRUCTION COST					
1	INTERSECTION AT ATLANTIC BLVD.	\$279,748			
2	INTERSECTION AT COMMERCIAL BLVD.	\$267,205			
3	INTERSECTION AT OAKLAND PARK BLVD.	\$237,113			
4	INTERSECTION AT BROWARD BLVD.	\$230,645			
5	INTERSECTION AT DAVIE BLVD.	\$276,216			
6	INTERSECTION AT MIRAMAR PKWY.	\$261,593			
TOTAL	STATE ROAD 7 BUS QUEUE JUMP / BYPASS LANE EOPCC	\$1,552,520			

APPENDIX F.4: MOBILITY HUB PROJECT SHEETS

Miramar Parkway/Hallandale Beach Boulevard Improvements

Multimodal Improvements **CORRIDOR STUDY** Move People • Create Jobs • Strengthen Communities

RECOMMENDED SHORT-TERM IMPROVEMENTS

- Upgrade existing pedestrian push buttons and associated signage.
- Tighten all curb radii where feasible.

RECOMMENDED LONGER-TERM IMPROVEMENTS

PLANNING COST ESTIMATES

The total cost of the proposed improvements is estimated at \$296,000. This cost estimate is based on planning-level unit cost information. Actual construction costs will vary.

Davie Boulevard Improvements

RECOMMENDED SHORT-TERM IMPROVEMENTS

- Upgrade existing pedestrian push buttons and associated signage.
- ♦ Fix damaged signal heads.
- ◊ Include a shelter for all existing bus stops.
- Widen sidewalks along Davie Blvd west of SR 7 wherever possible in lieu of bike lanes.
- ◊ Tighten all curb radii where feasible.

RECOMMENDED LONGER-TERM IMPROVEMENTS

PLANNING COST ESTIMATES

The total cost of the proposed improvements is estimated at \$312,000. This cost estimate is based on planning-level unit cost information. Actual construction costs will vary.

Broward Boulevard Improvements

RECOMMENDED SHORT-TERM IMPROVEMENTS

- Upgrade existing pedestrian push buttons and associated signage.
- Upgrade all crosswalks to high-emphasis.
- Tighten all curb radii where feasible.

RECOMMENDED LONGER-TERM IMPROVEMENTS

PLANNING COST ESTIMATES

The total cost of the proposed improvements is estimated at \$261,000. This cost estimate is based on planning-level unit cost information. Actual construction costs will vary.

Oakland Park Boulevard Improvements

RECOMMENDED SHORT-TERM IMPROVEMENTS

- Upgrade existing pedestrian push buttons and associated signage.
- Upgrade all crosswalks to high-emphasis markings.
- ♦ Verify intersection lighting.
- Widen sidewalks wherever feasible in lieu of bike lanes.
- ♦ Tighten all curb radii where feasible.

RECOMMENDED LONGER-TERM IMPROVEMENTS

PLANNING COST ESTIMATES

The total cost of the proposed improvements is estimated at \$268,000. This cost estimate is based on planning-level unit cost information. Actual construction costs will vary.

Commercial Boulevard Improvements

RECOMMENDED SHORT-TERM IMPROVEMENTS

- Upgrade existing pedestrian push buttons and associated signage.
- A Remove obsolete utility pole from the southwest corner.
- ♦ Tighten all curb radii where feasible.

RECOMMENDED LONGER-TERM IMPROVEMENTS

PLANNING COST ESTIMATES

The total cost of the proposed improvements is estimated at \$302,000. This cost estimate is based on planning-level unit cost information. Actual construction costs will vary.

Atlantic Boulevard Improvements

RECOMMENDED SHORT-TERM IMPROVEMENTS

- ◊ Install shrubs or pedestrian fencing on the west leg median.
- ◊ Widen sidewalks wherever feasible in lieu of bike lanes.
- ◊ Verify intersection lighting.
- ♦ Split curb ramps where feasible.
- ♦ Tighten all curb radii where feasible.

RECOMMENDED LONGER-TERM IMPROVEMENTS

PLANNING COST ESTIMATES

The total cost of the proposed improvements is estimated at \$316,000. This cost estimate is based on planning-level unit cost information. Actual construction costs will vary.

