

Complete Streets Design Guidelines

Better Streets | Better Communities | Better Broward

DRAFT

prepared by: Kimley»Horn

prepared for:

Contents

1. Introduction	6
2. Sidewalk Realm Design	20
3. Roadway Realm Design	32
4. Intersection Design	54
5. Implementation	80
Appendix A	84
Appendix B	88

Complete Streets Design Guidelines2.0

Acronyms

AASHI	AASHTO American Association of State Highway and Transportation Officials	
ADA	American with Disabilities Act	
APA	American Planning Agency	
APHA	American Public Health Association	
ASCE	American Society of Civil Engineers	
BAT	Business Access and Transit Lanes	
BRHPO	Broward Regional Health Planning Council	
BRT	Bus Rapid Transit	
CDC	Centers for Disease Control	
CSAC	Complete Streets Advisory Committee	
CSDG	Complete Streets Design Guidelines	
CSLIP	Complete Streets and Other Localized Initiatives Program	
CSMP	Complete Streets Master Plan	
CTG	Community Transportation Grant	

Environmental Protection Agency

FDUI	Fiorida Department of fransportation
FHWA	Federal Highway Administration
ITE	Institute of Transportation Engineers
LAP	Local Agency Program
LPI	Leading Pedestrian Interval
LRT	Light Rail Transit
LRTP	Long Range Transportation Plan
MMLOS	SMultimodal Level of Service
MMSC	Multimodal Scoping Checklist
MP0	Metropolitan Planning Organization
NACTO	National Association of City Transportation Officials
NHS	National Highway System
PAC	Project Advisory Committee
PHBs	Pedestrian Hybrid Beacons
ROW	Right-of-Way

FDOT Florida Department of Transportation

EPA

RRFBs Rectangular Rapid Flashing Beacons

SSS Safe Streets Summit

TIGER Transportation Investment Generating Economic Recovery

TIP Transportation Improvement Program

 $\textbf{TOUCH} \ \text{Transforming our Community's Health}$

- **TPA** Transportation Planning Agency
- **TPO** Transportation Planning Organization

TSP Transit Signal Priority

USDOT U.S. Department of Transportation

Introduction

Complete Streets Design Guidelines 0

Context

Complete Streets policies came into being in late 2003 in response to car-centric planning. The term "Complete Streets" was coined by America Bikes as it was developing a new policy initiative with the goal of ensuring the same rights and safe access for all users of streets, including pedestrians, bicyclists, motorists, and transit riders of all ages and abilities.1

The first Broward Complete Streets Guidelines was completed in 2012. Since the inception, there has been a spike in public awareness and interest regarding the value of having streetscapes that cater to a variety of transport modes and foster human interaction. A wealth of new information to complement the understanding of what constitutes a Complete Street and the set of measures available to achieve the desired goal has transformed since the starting point of Complete Streets.

What are Complete Streets?

A common definition of Complete Streets refers to the practice of planning, designing, and operating streets so that all transportation modes and users have an equal claim to the right of way. Creating a safe and comfortable environment for people of all ages and abilities to freely move in and out of the city is a pinnacle principle for advocates of Complete Streets. Whether residents and visitors choose to travel by means of walking, cycling, public transit or motor vehicles should not inhibit their access to destinations or activities throughout the community.

Building and maintaining the necessary physical infrastructure – such as sidewalks, crosswalks, bicycles lanes, roundabouts, curb extensions, and transit stops – is essential. However, many other design elements must also be considered. Vegetation, lighting, street furniture, lane separation, lane width, parking facilities, accessibility, and connectivity all play an important role in the ultimate success of the network.

Keeping these principles in mind, it is noteworthy to mention that local conditions and demographic trends have a powerful effect on what type of design is appropriate for each specific community. Design elements can take various forms and be adapted to fit the needs and concerns of residents, resulting in a myriad of options for what constitutes a "Complete Street."

Complete Streets Design Guidelines2.0

Why Complete Streets?

Given the relatively recent recognition of the value of Complete Streets, many cities have inherited transportation systems and urban realms vastly dependent on private vehicle travel. Almost uniformly across the globe, the "modern city" is struggling to keep up with the inefficiencies and negative sustainability impacts resulting from car-oriented designs. The repercussions to communities can be thought of in terms of social, economic, and environmental impacts and have lasting impacts on the individual, the community, and the planet.

Complete Streets have a prevailing effect counteracting these negative impacts and generating countless benefits.

Social

- Social exclusion particularly affecting the most vulnerable groups such as the young, the elderly, disabled, or poor due to limited transportation options.
- Health & wellness deterioration due to a lack of opportunity for necessary daily physical activity and over exposure to greenhouse gas emissions from vehicular traffic.
- Lifeless communities with no sense of cohesion and lack of opportunity for interaction and participation in urban life.

Economic

2

- Economic hardships to the individual due to the high cost of driving.
- Limited commercial opportunities at neighborhood level, deters small businesses from flourishing.
- Healthcare costs, opportunity cost of lost labor resulting from congestion, cost of energy and fuel overconsumption, and repair costs incurred due to environmental damages. These numbers often circulate in the millions.

Environmental

- Excessive greenhouse gas emissions resulting in higher concentration of pollutants and often resulting in poor air quality.
- Heat-Island Effect heightened due to overuse of concrete pavement. Shaded surfaces may be 20-45°F cooler than unshaded counterparts.²
- Expansion of development boundaries which threatens wildlife, protected wetlands, and underwater aquifers.

Capacity. Complete Streets can improve the efficiency and capacity of existing roads by moving more people in the same amount of space. Complete streets can maintain volume, reduce speeds, and conveniently accommodate bicyclists and pedestrians. Getting more productivity out of the existing road and public transportation system is vital to reducing congestion.

Equity. Complete streets ensure the opportunity for full participation in all activities and benefits for all members of society. People of all ages, abilities, and income levels will have more options when making essential trips such as to work, to school, to the grocery store, or simply for recreational purposes. In face of the usually high costs associated with private vehicle ownership, complete streets open affordable alternative transportation options such as walking, bicycling, and use of public transit for residents and visitors.

Public Health. To maintain good health, the World Health Organization recommends that adults engage in at least 150 minutes of moderate exercise throughout the week, while children must accumulate at least 60 minutes daily³. The Centers for Disease Control (CDC) identified a strong correlation between planning and investments in infrastructure and some of the most serious health concerns facing the United States, including obesity, coronary heart disease, diabetes, high blood pressure, cardiorespiratory diseases, and depression. In 2016, over two-thirds of Broward's adults were reported as overweight or obese, while 84% of high-school students were found to not be getting sufficient physical activity⁴. By promoting active transportation, such as walking and bicycling, Complete Streets open an opportunity to integrate moderate exercise into daily routines. Complete Streets foster healthier communities.

Satety. A 2017 report by the Governors Highway Safety Association found Florida to have the 5th highest rate for pedestrian fatalities in the country⁵. Meanwhile, the rankings do not improve for bicyclists, with the National Highway Traffic Safety Administration declaring Florida as the state with the highest proportion of bicyclist fatalities compared to all other states in the nation⁶. Making these travel choices more convenient and attractive means making them safer and leveling the playing field for the most vulnerable road users.

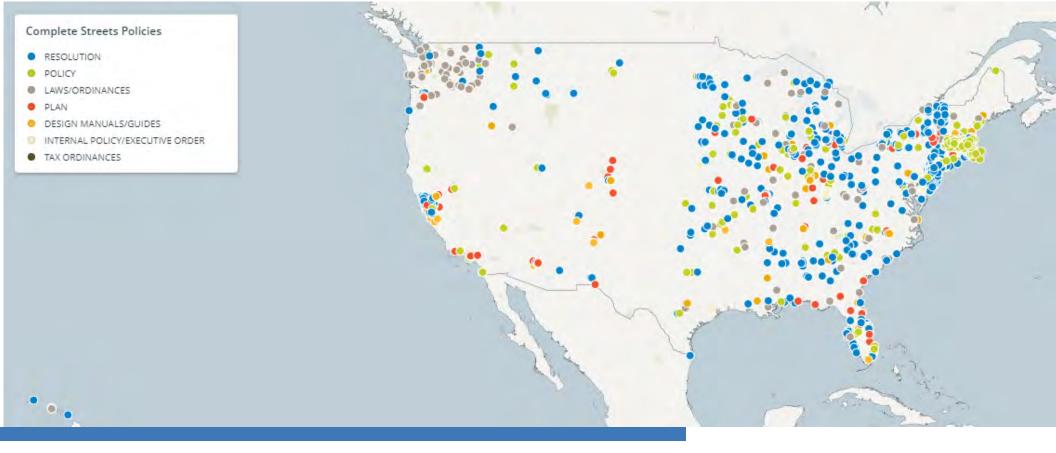
Sustainability. Sustainable development or "Smart Growth" recognizes "the importance of ensuring that all people should be able to satisfy their basic needs and enjoy a better quality of life, both now and in the future"⁷. It advocates to the resiliency, social, economic, and environmental wellbeing of a city, which is heavily tied to the efficient move of goods and people. The Broward MPO 2035 Long Range Transportation Plan (LRTP) recognizes the need for a shift on investment from car-centric projects to initiatives that promote transit and active transportation. Planning, designing, implementing, and maintaining a safe and convenient network of complete streets is the first – and most decisive- step towards the creation of a sustainable transportation system.

The Time is Right. In recent years, the trend toward Smart Growth has become stronger, louder, and more urgent than at any other point in history. Public and

private organizations as well as government agencies across the board are becoming powerful advocates for Smart Growth policies, recognizing the wide range of benefits that sustainable communities yield. Establishing a high-quality transportation system has been documented to bring about economic regeneration, attract talent, investment, and altogether raise the level of competitiveness of communities on a global scale.

- 4 FLHealthCharts
- 5 Pedestrian Traffic Fatalities by State, 2017 Preliminary Data
- 6 NHTSA, Bicyclists and other cyclists Traffic Safety Facts, 2015 Data
- 7 Rees, William E. & Roseland, Mark. 1991. Sustainable Communities: Planning for the 21st Century

³ Physical Activity and Adults, WHO



AARP, American Public Health Association (APHA), Safe Routes to School National Partnership, Smart Growth America, Institute of Transportation Engineers (ITE), American Planning Association (APA), American Society of Civil Engineers (ASCE), have demonstrated being a strong supporter of complete streets.

Principles for Smart Growth

1	Mix land uses
2	Take advantage of compact design
2 3	Create a range of housing opportunities and choices
4	Create walkable neighborhoods
5	Foster distinctive, attractive communities with a strong sense of place
6	Preserve open space, farmland, natural beauty, and critical environmental areas
7	Direct development towards existing communities
8	Provide a variety of transportation choices
9	Make development decisions predictable, fair, and cost effective
10	Encourage community and stakeholder collaboration in development decisions ⁸

8

Complete Streets tailor and use Smart Growth Principles to make objective-led planning decisions with significant short and long-term impacts.

Over 1,400 Complete Streets policies have been passed in the United States to date, including 33 state governments.

Smart Growth America

Complete Streets Design Guidelines 2.0

Complete Streets at the Broward MPO

The Broward Metropolitan Planning Organization (MPO) advocates for safer and healthier streets through a Complete Streets Initiative that encompasses several policies and strategies. The Complete Streets Design Guidelines provided a reference manual for all municipalities that wished to implement designs oriented to the needs of all road users. Ever since, the MPO has continued its efforts for the enhancement of the urban streetscape of Broward County.

Some of the major initiatives include but not limited too:

Complete Streets Advisory Committee (CSAC)

Establishment of a standing committee to oversee the needs of pedestrians and cyclists in the County. The committee ensures coordination across departments and agencies to align transportation initiatives and projects for the benefit of active travelers. Professionals of multiple disciplines and backgrounds serve on the advisory committee, which meets regularly and can recommend issues for action or consideration.

Weblink: http://www.browardmpo.org/index.php/our-committees/completestreets-advisory-committee

Complete Streets and other Localized Initiatives Program (CSLIP)

Provides funding for small local transportation projects which improve the safety and mobility for all transportation users in Broward. This competitive grant program can fund projects such as (but not limited to): complete streets projects, traffic calming and intersection improvements, ADA upgrades, mobility hubs, bus shelters, bike racks and technology advancements such as transit signal priority and traffic control devices.

Weblink: http://www.browardmpo.org/index.php/major-functions/completestreets-localized-initiatives-program

Mobility Program

Serves as the implementation arm of the Complete Streets Initiative and focuses on implementing projects and improvements that provide additional transportation options other than the automobile. These projects fill vital gaps in Broward's bicycle and pedestrian network.

Weblink: http://www.browardmpo.org/index.php/mobilityprogram

Complete Streets Master Plan (CSMP)

Intended to guide future investment in Complete Streets improvements by developing a prioritized list of projects based on technical, data-driven analysis, including access to transit. Projects identified will be based on Complete Streets principles that create safe streets at a human scale. The Complete Streets Master Plan concentrates transportation investments in Bundle Areas of Complete Streets projects which can increase active transportation.

Weblink: http://www.browardmpo.org/index.php/completestreets-master-plan

Walking Audits

Assessment of high ranked priority corridors from the Complete Streets Master Plan were selected for a Walking Audit. Walking Audits provides an experiential hands-on exercise that evaluates the walking environment, identified pedestrian (and bicyclist) issues such as safety, access, connectivity, comfort, and convenience and identified potential alternatives or solutions such as engineering treatments, policy changes, or education and enforcement measures.

Weblink: http://www.browardmpo.org/index.php/walking-audits

Brief History of Complete Streets Program

2009	The Broward Metropolitan Planning Organization (MPO) board adopted the 2035 "Transformation" Long Range Transportation Plan (LRTP). This Plan allocated 70% of the projected funding to transportation modes (transit and bicycle/pedestrian) other than the automobile.
2010	Broward MPO, together with the Florida Department of Transportation (FDOT) developed the Broward MPO Mobility Program. The goal of this program was to move active transportation projects from planning to design and ultimate to construction.
2011	Broward Regional Health Planning Council (BRHPC) secures Centers for Disease Control (CDC) Community Transformation Grant (CTG) to create healthy and safe places in Broward by promoting an active lifestyle.
	Broward Regional Health Planning Council (BRHPC), Smart Growth Partnerships, and the Health Foundation of South Florida establishes a partnership with the Broward MPO to develop the Broward Complete Streets Guidelines as part of the CDC CTG Transforming our Community's Health (TOUCH) Grant.
	Broward MPO Board endorses the Broward Complete Streets Guidelines.
2012	Broward MPO formally establishes the Complete Streets Advisory Committee (CSAC) to guide the Broward MPO's Complete Streets Initiative. The Initiative's main intent is to provide the necessary tools and resources for local governments seeking to implement Complete Streets in their respective communities.
	The Broward MPO successfully programs approximately \$15 million in bicycle/pedestrian improvements in its Transportation Improvement Program (TIP). This initial investment includes multiple projects located in various municipalities throughout the Broward Region.
2013	Broward MPO develops a Model Complete Streets Policy and Plan Framework to assist member governments with their Complete Streets efforts. CSAC selects two Complete Streets Demonstration projects – Hollywood Boulevard (Urban Context) in the City of Hollywood and Sunset Strip (Suburban Context) in the City of Sunrise. The Broward MPO completes its Multimodal Level of Service tool to measure the benefits of a more flexible tool than the traditional roadway-based level of service tool. The two demonstration projects are analyzed and evaluated utilizing the Multimodal Level of Service (MMLOS) tool.
	City of Deerfield Beach becomes the first City in the State of Florida to adopt Complete Streets Guidelines based on the Broward Complete Streets Guidelines based on the Broward Complete Streets Guidelines developed by the Broward MPO.
14	

	Broward MPO hosts the first Safe Streets Summit (SSS) in the City of Hollywood to provide training and education to local government staff and elected officials interested in adopting Complete Streets.
2014	The City of Sunrise, in conjunction with the Broward MPO, hosts the inaugural Let's Go Biking! Event.
2014	The Broward MPO successfully programs over \$100 million in bicycle/pedestrian projects in the region for the next five years.
	City of North Lauderdale, City of Coconut Creek, and City of Lauderhill become the first communities in Broward to participate in Walking Audits to help their communities understand the walking and bicycling needs in their area.
2015	The Broward MPO hosts a groundbreaking ceremony to kick off the construction of the initial investment of \$15 million in pedestrian and bicycle improvements.
2015	The Broward MPO publishes the Complete Streets Evaluation Toolkit to evaluate Complete Streets projects utilizing metrics related to transportation, safety, health, and economic development.
2016	Broward MPO is awarded a Transportation Investment Generating Economic Recovery (TIGER) to fund an additional \$19 million of Complete Streets projects in Broward.
2010	The City of Dania Beach hosts the Broward MPO's inaugural Let's Go Walking! Event.
	The Broward MPO breaks ground on two Complete Streets demonstration projects in the City of Hollywood and City of Sunrise.
	Broward MPO breaks the \$200-million-dollar mark for funded bicycle/pedestrian projects in the 2019 Tentative Work Program.
2017	Broward MPO initiates the development of the Complete Streets Master Plan (CSMP). This effort will guide future investments by creating a prioritized list of projects based on technical, data-driven analysis and community and local partner input.
2017	Broward MPO establishes a Project Advisory Committee (PAC) to guide the development of the CSMP.
	The Broward MPO develops and publishes the Broward Bike Suitability Map.
	The Broward MPO partners with the Palm Beach Transportation Planning Agency (TPA) and the Miami-Dade Transportation Planning Organization (TPO) to host the 4th Annual SSS in the City of Sunrise.
	A Ribbon Cutting Ceremony is held for the Sunset Strip Demonstration project in the City of Sunrise.
2018	Broward MPO staff holds meetings with local member governments to review list of recommendations and provide opportunities for input ensuring the local perspective is included in the CSMP.
	Broward MPO provides American with Disabilities Act (ADA) Transition Plan training and Technical Assistance to municipalities.
2019	Broward MPO Board adopts the CSMP.

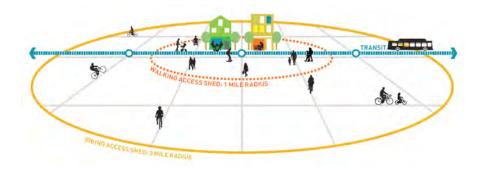
Complete Streets Design Guidelines 0

Partner Agency Support Florida Department of Transportation (FDOT)

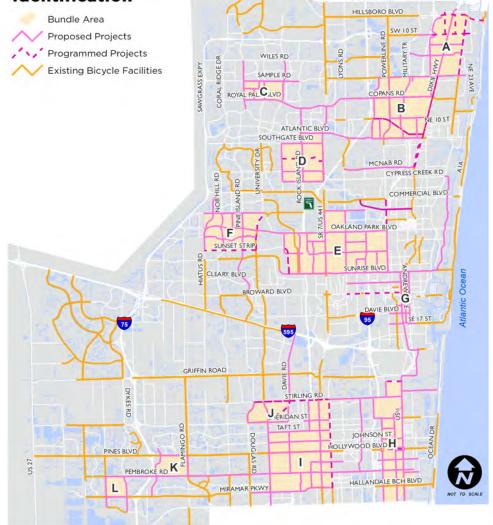
- 2014 Adoption of the Complete Streets Policy
- 2015 Released the Complete Streets Implementation Plan
- 2017 District Four completed mapping all its state road for context classification using GIS. District Four has incorporated context classification into its Multimodal Scoping Checklist (MMSC), which is a long-standing district tool used to coordinate with local governments.

The context classification system broadly identifies the various built environments existing in Florida. FDOT's context classification system describes the general characteristics of the land use, development patterns, and roadway connectivity along a roadway, providing cues as to the types of uses and the user groups that will likely utilize the roadway.

Broward County Complete Streets


The Broward County Board of County Commissioners adopted Complete Streets policies into the Broward County Comprehensive Plan in June 2014. A number of municipalities have adopted resolutions in support of the concept and are working toward adopting policies into their comprehensive plans.

Complete Streets Master Plan (CSMP)


The Complete Streets Master Plan is intended to guide future investment in Complete Streets improvements by developing a prioritized list of projects based on technical, datadriven analysis, including access to transit. The Bundle Areas were based on a demand and equity analysis; higher demand for walking and biking and high concentration of vulnerable populations.

The demand analysis estimates the cumulative demand representative of where people live, work, shop, play, learn, and access transit by quantifying factors that generate bicycle and pedestrian movement. This provides a general understanding of expected walking and biking activity by analyzing spatial data representative of origins and destinations in the County. The equity analysis considers demographic factors, which when combined, indicated where there are concentrations of historically vulnerable populations. The socioeconomic indicators included age, income, language, race, educational attainment, and commute. Active transportation investments in these areas could help alleviate a broader range of issues, such as access to jobs, education, and healthcare.

Twelve (12) Bundle Areas were identified. Within the Bundle Area, Complete Streets projects were identified to align the analysis with how users walk and bike within a certain distance. To create a more walkable and bikeable community, concentrating transportation investments in Bundle Areas of Complete Streets projects can increase active transportation. Typically, many people do not walk farther than a 1-mile radius or bike farther than a 3-mile radius. It is more impactful to build a dense network of Complete Streets in Bundle Areas to help the community become more walkable and bikeable.

Complete Streets Identification

Complete Streets Design Guidelines 2.0

Purpose

The purpose of the Broward MPO Complete Streets Design Guidelines 2.0 is to add new facility types, techniques, and information that is new since the 2012 Broward Complete Streets Guidelines. It incorporates changes adopted by partner agency policies and standards, including FDOT Context Classification criteria and includes detailed specifications for preferred recommended facilities and design elements, including typical sections.

The Design Guidelines 2.0 complements the Complete Streets Master Plan because it provides design guidance for implementing Complete Streets projects.

Sidewalk Realm Design

The Sidewalk Realm is located between the curb and the property line. Sidewalks are designed primarily to allow safe pedestrian movement separated from moving traffic. This chapter explores six elements of the Sidewalk Realm:

• Pedestrian Zone

• Frontage Zone

Bicycle Facilities

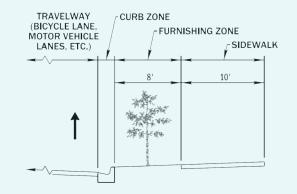
• Furnishing Zone

• Transit Boarding Areas

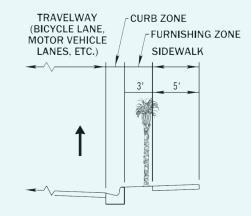
Dicycle r acinitiePlacemaking

Complete Streets Design Guidelines 2.0

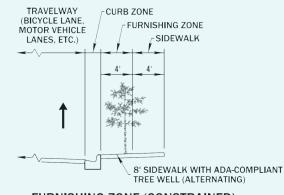
Pedestrian Zone


The Pedestrian Zone is the space most associated with the Sidewalk Realm. It consists of a lane designed to exclusively accommodate pedestrian traffic alongside a road. It is usually placed on the outside of the curb at a raised elevation from the adjacent vehicular lanes.

Beyond the basic infrastructure provision often seen in cities, there are numerous design elements that can improve the pedestrian zone to create a friendly, safe, and inviting space. Pedestrians tend to be the most vulnerable road users, making safety an often-cited concern deterring people from choosing "walking" as a viable transport option. Lane widths surpassing the constrained 6-foot marking, physical separation from vehicular and bicycle traffic, and enhanced crosswalks can all have a tremendous effect by increasing actual and perceived safety. Removing obstacles and adding amenities can further turn the Pedestrian Zone from a place where people solely travel into a space where people choose to stay and gather.


Furnishing Zone

Vegetation is an integral element that can positively shape the built environment of the Sidewalk Realm. Including a Furnishing Zone is one of the first enhancements added to Complete Streets. This space is highly dynamic and can also accommodate other elements of the realm that would become constrictions in the Pedestrian Zone. Street furniture, lighting, signage, litter and recycling bins, utility equipment, stormwater elements, hydrants, bicycle racks, bikeshare stations, public art and parking meters can all be placed.


The Furnishing Zone is most often placed between the Pedestrian Zone and the Curb Zone, effectively creating a pleasing primary separation of people on the sidewalk from vehicular traffic. However, the Furnishing Zone can adopt many other layouts tailored to respond to the needs of the location. Occasionally, integration between the Furnishing Zone and Pedestrian Zone is both possible and desirable, as it can create lively public spaces.

FURNISHING ZONE (TARGET)

FURNISHING ZONE (CONSTRAINED)

FURNISHING ZONE (CONSTRAINED)

8' Pedestrian Zone adjacent to 7' Furnishing Zone

-

Constrained Furnishing Zone

within 8' Sidewalk Realm

5' Pedestrian Zone adjacent to 5' Furnishing Zone

Meandering Pedestrian Zone, A1A Greenway

Sidewalk Realm with Frontage & Furnishing Zones

States and the states of the

Wide Pedestrian Zone with Furnishing Zone & Frontage Zone

Photos by Kimley-Horn

Frontage Zoné in Downtown sidewalk with streetside cafe seating Photo by Kimley-Horn

CRANBURY

PIZZA

Frontage Zone with streetside cafe in residential neighborhood setting Source: NACTO

Frontage Zone

The Frontage Zone acts as a connector between buildings and the Sidewalk Realm. In the urban core, street cafes can often be found here, inviting foot traffic into the establishments. In general, lower floor facades can create harmony and incite pedestrian activity or deter it. Interesting shop Frontage Zones tend to be narrow and vertical, showcase soft edges, appeal to many senses, have texture and details, and offer a view into the establishments.

In residential areas, the frontage zone is equally notable, as it provides the context for the walk and a transition between the private and public space.

"If the complex is interesting and exciting at eye level, the whole area will be interesting. Therefore, try to make the edge zone inviting and rich in good detail, and save your efforts on the upper floors, which have far less importance both functionally and visually."

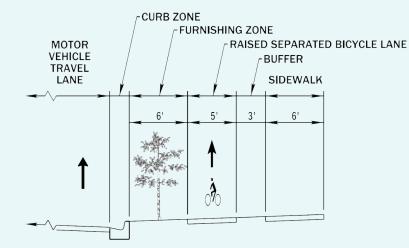
Ralph Erskine

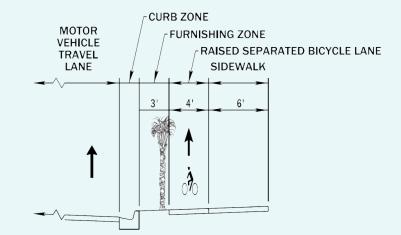
Transit Boarding Area

Transit Boarding Areas offer a space for public transit riders to wait, board, and alight. They are often placed in the Furnishing Zone, near intersections, and in close proximity to the vehicular or transit lanes, but occasionally can also be found in the median. This is the space where the pedestrian and cyclist become transit users and vice versa, therefore creating all possible comfortable conditions for the user transition and easing accessibility for people of all ages and abilities are key ways to encourage multimodal journeys.

Improved Transit Boarding Areas offer street furniture, information screens, and shelters that provide protection from extreme and adverse weather conditions. Ticketing systems can also be placed in Boarding Areas as a way of accelerating the boarding process and reduce transit travel times. Transit Boarding Areas also play a role welcoming people into streets and neighborhoods, and as such should be clearly visible, marked, and provide wayfinding information.

Bicycle Facilities


Raised Separated Bicycle Lanes


Raised Separated Bicycle Lanes - also known as Raised Cycle Tracks - effectively transfer the bicycle facilities out of the Roadway Realm and into the Sidewalk Realm. These lanes are placed at an interim elevation between the Roadway Realm and the Pedestrian Zone, or at the same level as the sidewalk.

The unrivaled protection from motor vehicles experienced on Raised Separated Bicycle Lanes makes them the preferred choice of facility of many bicyclists and planners. Enhanced protection is an undeniable feature of this design. First, the raised surface makes bicyclists more visible to drivers, and meanwhile the leveled separation acts as a barrier keeping vehicles from driving into the bicycle lane. Furnishing space or other buffers can also be incorporated to further separate the motor vehicles, pedestrians, and bicyclists. These lanes are therefore most appropriate in situation or locations where added protection is deemed necessary, such on streets with multiple motor lanes, higher speed limits, or numerous curves.

Noteworthy, these facilities should not be implemented at the expense of the Pedestrian Zone, as pedestrians are likely to cross over to the bicycle lanes if sufficient space is not provided for walking. The target design for this type of facility is a 6-foot Furnishing Zone followed by a 5-foot Bicycle Lane, a 3-foot Buffer, and lastly a 6-foot Pedestrian Zone. If circumstances don't allow for these widths, it is acceptable half the Furnishing Zone and incorporate a 4-foot Raised Separated Bicycle Lane adjacent to a 5-foot Pedestrian Zone.

Separated Bicycle Lanes in the Roadway Realm are discussed in the next chapter.

RAISED SEPARATED BICYCLE LANE (TARGET)

RAISED SEPARATED BICYCLE LANE (CONSTRAINED)

Benefits:

- Greatest degree of separation and protection from motorized traffic, which can encourage cycling
- Novice cyclists are more likely to ride in the bicycle lane, leaving the sidewalk for pedestrians
- Least amount of conflict points between bicycle lane and motorized lanes
- Raised cycle tracks receive less wear and tear than travel lanes
- The raised bike lane drains towards the centerline, leaving it clear of debris and puddles

Considerations:

- Special maintenance procedures may be needed to allow for regular maintenance like to keep the path clear of debris
- Special consideration to bicycle & pedestrian interactions may be needed to avoid conflicts
- Retrofitting streets with raised bike lanes is costlier; and integration with larger remodeling projects tends to be preferred due to drainage reconstruction

Two-Way Raised Separated Bicycle Lanes

In certain environments of the Urban Core, where higher volumes of bicycle trips are expected or where there is a desire to increase modal share, Raised Separated Bicycle Lanes can be designed bidirectionally. A 2014 Chinese study measured capacity at 2,500 bikes per meter, which on a 10-foot Two-Way Separated Bicycle Lane translates into 7,500 people/hr.1 The directional separation also has an effect increasing perceived and actual safety, possibly influencing demand for this mode of transport from less confident users.

The capacity of a single 10-foot lane at peak conditions with normal operations.

Source: NACTO

Benefits:

- Provides a safer and more comfortable environment for riders of all comfort levels
- Provides contra-flow movement on one-way streets

Considerations:

- Careful consideration is required at intersections to ensure bicyclists are visible to motorists
- Additional width is needed to accommodate travel in both directions

¹ Dan Zhou, et al. Estimating Capacity of Bicycle Path on Urban Roads in Hangzhou, China (2014)

Two-Way Raised Separated Bicycle Lane, Minneapolis

oveland

r

GHT LANE MUST JRN RIGHT

USES EXEMPT

Photo by Kimley-Horn

Complete Streets Design Guidelines2.0

Shared Use Paths

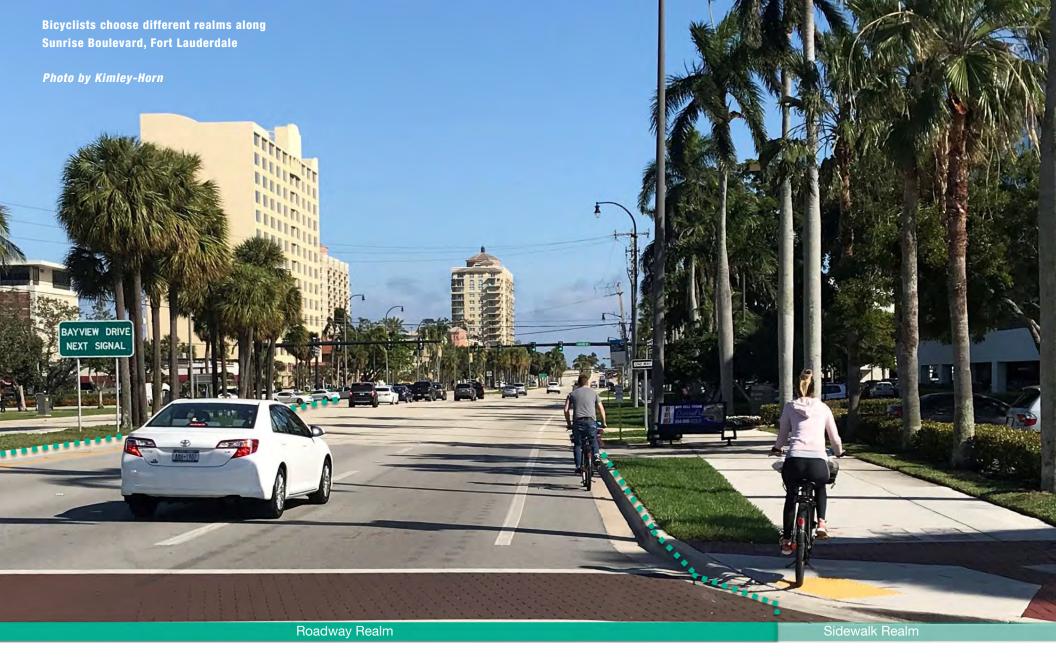
Shared Use Paths are dedicates spaces where most forms of non-motorized transport share the same lane. Open space or a physical barrier separate these paths from vehicular lanes, providing protection for pedestrians, bicyclists, rollerbladers, skaters, and others. The AASHTO Guide recommends 10 - 14-feet wide lanes for Shared Use Paths, although under constrained situations as little as 8 - 10-feet may be deemed acceptable. 2

² AASHTO Guide for the Development of Bicycle Facilities (2012)

Pompano Beach Airpark shared use path

Placemaking

The Sidewalk Realm is more than a transport lane, it is a place to foster human interaction and wellbeing. As such, it is not enough to create an environment for people to travel through, but rather a place for them to meet, gather, and linger. An endless number of design elements and strategies can be used to create this effect, which planners have denominated "Placemaking".


Incorporating public art exhibitions, music, nighttime illumination, technology, and science in the sidewalk design creates an opportunity for passersby to interact, admire, and learn from the space. When the sidewalk network is connected through parklets, sidewalk cafes, neighborhood squares, gardens, or plazas the effect is heighten even more. Concurrently, such elements enrich the character of a community going as far as to impact the local economy. Countless urban regeneration projects in the U.S. and abroad have demonstrated the added value of designing streets as activated public spaces. In this endeavor policy can be a powerful tool, as evidenced by programs such as the PlaNYC Initiative which among other things succeeded in the planting of over a million new trees throughout New York City.³

Creating comfortable and interesting walks with a wide range of destinations and activities along the journey is key to increasing the share of trips generated by this mode of transport, with some studies emphasizing the effect it can have specifically on recreational trips. Special events, such as farmer markets and fairs, can also play an important role promoting lively streets and adding to the range of activities that can take place in the streets. Only by designing dynamic streetscapes suited for multiple uses and users can this powerful effect be unleashed.

31

³ PlaNYC, A Greener Greater New York, 2011

Roadway Realm Design

The Roadway Realm consists of the space where vehicles travel, which is typically located between the curbs of a street right-of-way. This chapter explores four elements of Roadway Realm design:

• Safe Speeds

• Lane Widths

• Transit Lanes

• Bicycle Facilities

Complete Streets Design Guidelines 2.0

Safe Speeds

Streets in the urban context should be designed to operate at speeds that create a safe environment for all users of the roads, motorized and non-motorized. An important element of the FDOT Design Manual is that it allows for improved flexibility in design speeds on streets in urban communities. Lower speeds are directly correlated with a safer urban environment, particularly for the most vulnerable street users.

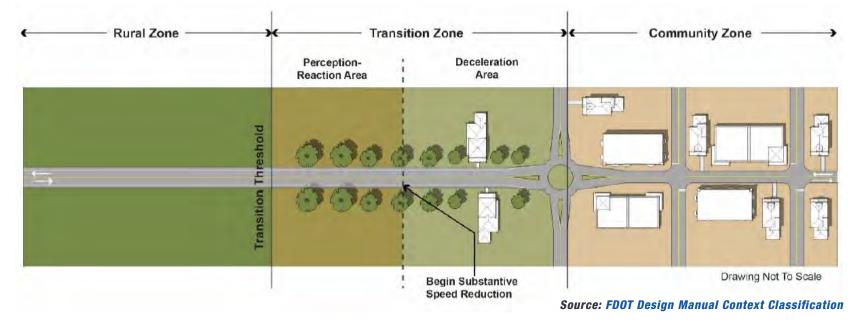

Context Classification	Design Speed (mph)	Strategies
C1	55-70	Project-specific; see FDM 202.4.
C2	55-70	Project-specific; see FDM 202.4.
C2T	40-45	Roundabout, Lane Narrowing, Horizontal Deflection, Speed Feedback Signs, RRFBs and PHBs
	35	Techniques for 40-45 mph, plus On-street Parking, Street Trees, Short Blocks, Median Islands at Crossings, Road Diet, Bulbouts, Terminated Vista
	30	Techniques for 35-45 mph, plus Chicanes, Median Islands in curved sections Textured Surface
	≤ 25	Techniques for 30-45 mph, plus Vertical Deflection
C3R, C3C	50-55	Project-specific; see FDM 202.4.
	40-45	Roundabout, Lane Narrowing, Horizontal Deflection, Speed Feedback Signs, RRFB and PHB
	35	Roundabout, Lane Narrowing, Horizontal Deflection, Speed Feedback Signs, Median Islands in crossings, Road Diet, RRFB and Hawk, Terminated Vista
C4	40-45	Roundabout, Lane Narrowing, Horizontal Deflection, Speed Feedback Signs, RRFB and PHB
	35	Techniques for 40-45mph plus On-Street Parking, Street Trees, Short Blocks Median Islands at Crossings, Bulbouts, Terminated Vista
	30	Techniques for 35-45 mph plus Chicanes, Median Islands in Curve Sections, Textured Surface
C5	35	Roundabout, On-street Parking, Street Trees, Short Blocks, Speed Feedback Signs, Median Islands in Crossings, Road Diet, Bulbouts, RRFB and HAWK, Terminated Vista
	30	Techniques for 35 mph plus Chicanes, Median Island in Curve Sections, Textured Surface
	25	Techniques for 30-35 mph plus Vertical Deflection
C6	30	Roundabout, On-Street Parking, Horizontal Deflection, Street Trees, Median Islands in Curve Sections, Road Diet, Bulbouts, Terminated Vista, Textured Surface
	25	Techniques for 30 mph plus vertical deflection

Table 202.3.1 Strategies to Achieve Desired Operating Speed

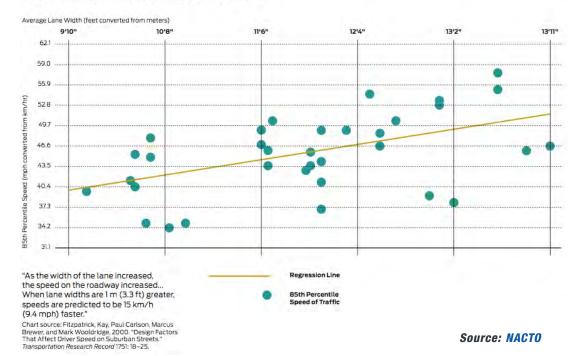
The FDOT Design Manual further recommends transitioning zones for speed limits according to the Context Classification System. A good strategy is to design roads so that they feel uncomfortable at speeds higher than the desired operating speed. For existing higher speed roads traffic calming measures can be used. Other design elements, such as lining the roadway with trees, have also been found to reduce operating speeds in urban areas. Special consideration should be given to school zones and its surroundings.

Source: FHWA SA-10-001

Pedestrian Fatality Rates by Impact Speed

35

Complete Streets Design Guidelines 2.0


Lane Widths

Until recently, the AASHTO standard of 12foot wide through lanes has been the adopted norm in many street designs. However, studies have demonstrated that the wider the lane, the faster vehicles will travel. Since the relationship between higher speeds and chance of survival is so deadly, traffic calming measures usually include road and lane diets, to either repurpose or reduce lane widths where appropriate.

Lane widths in the range of 10 feet to 12 feet show no discernible difference in capacity or increased risk of crashes. All of this suggests that 10 feet may be more fitting for lane widths in the urban context.

Parking lane widths should range from 6.5 feet to 8 feet depending on adjacent street element. Parking lanes adjacent to curb-and-gutter drainage elements should be 6.5 feet wide (exclusive of the gutter pan width) since parked cars can have tires resting on the gutter. Parking lanes not adjacent to curb-and-gutter drainage should be 7 feet wide on local streets and 8 feet wide on collector and arterial streets.

Wider travel lanes are correlated with higher vehicle speeds.

Lane Width & Capacity

Conserve By Bicycle Program, a 2007 study by the Florida Department of Transportation, found no discernable change in capacity between 12 feet and 10 feet lanes. An analysis is recommended identify roads with excessive capacities to determine the impact on the network of either reducing or eliminating travel or parking lanes.

"The measured saturation flow rates are similar for lane widths between 10 feet and 12 feet. For lane widths below 10 feet, there is a measurable decrease in saturation flow rate. Thus, so long as all other geometric and traffic signalization conditions remain constant, there is no measurable decrease in urban street capacity when through lane widths are narrowed from 12 feet to 10 feet".

John Zegeer, The Influence of Lane Widths on Safety and Capacity

Recommended lane widths based on speed limits

Lane Width
10 feet
11 feet
11 feet
10 feet (9 feet constrained)
10 feet (9 feet constrained)

Transit Lanes

Although transit lanes do not tend to be separated by a physical barrier from other travel lanes, they are intended for the exclusive or semi-exclusive use of transit vehicles. Emergency vehicles may also use these lanes in congested situations. Transit lanes can take many forms and accommodate different modes of public transit based on the context in which they are implemented.

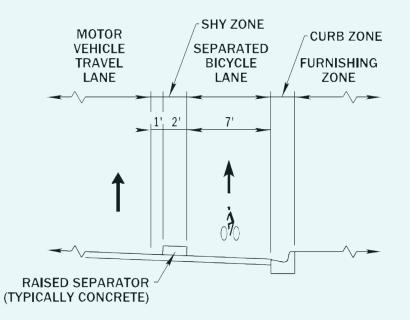
Transit-Only lanes are the most common type of Transit Lanes and are the foundation for more advanced transit infrastructure such as Bus Rapid Transit (BRT) and Light Rail Transit (LRT). Bus-Only lanes are typically 11 feet wide but can also be designed as Shared Bus/Bicycle Lanes in which case at least 12 feet are recommended and 13-15 feet desired.

Business Access and Transit Lanes (BAT Lanes) are a good solution for urban and suburban conditions where bus frequency is not high enough to warrant exclusive lanes; however, the travel time and reliability benefits of these lanes will serve the transit strategy for the

corridor. BAT lanes are expressly reserved for turning vehicles and buses. Bicycles can be permitted to use BAT lanes if a dedicated bicycle lane is not provided on the street. Private motor vehicles can use BAT lanes only to make a right-turn into a driveway or side street. Private motor vehicles turning out of a driveway or side street should turn into the nearest general purpose through lane.

By separating transit from general traffic, time spent in congestion can be significantly reduced – especially at peak hours- and resulting in decreased travel time for public transit users. This can have a powerful effect on the perceived reliability of the service, potentially increasing demand for public transit in busy city zones.

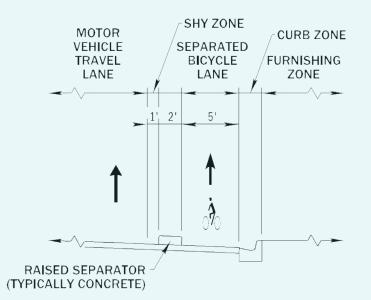
Bicycle Facilities


Separated Bicycle Lanes

Roadway Realm Separated Bicycle Lanes are found at roadway surface level, inside the curb. These lanes offer a physical barrier that effectively protects the bicycle lane from motor vehicle traffic. A raised concrete divider measuring 2 feet to 4 feet wide can act as the separator, but other physical elements – such as flexible plastic delineators, parking curbs, planters, or even a parking lane – may also be used.

Conflicts with motor vehicles may still occur at intersections and driveways; however, this facility type provides the most comfortable on-street environment for people who are interested in bicycling more but concerned about riding directly adjacent to traffic. Separated bicycle lanes also eliminate the conflicts with parking or loading vehicles that other bicycle lanes face.

The minimum width for separated bicycle lanes is 5 feet, while the target width is 7 feet to allow comfortable side-by-side riding. A raised separator must be present. The minimum width of the space within which the raised separator exists is 3 feet. One example is a 2-foot raised concrete divider and a 1-foot shy zone to the adjacent motor vehicle lane. Another example is a 3-foot buffer with flexible plastic delineators in the center. Therefore, the minimum width of the combined bicycle lane plus separator is 8 feet and the target width is 10 feet.



SEPARATED BICYCLE LANE (TARGET)

Benefits:

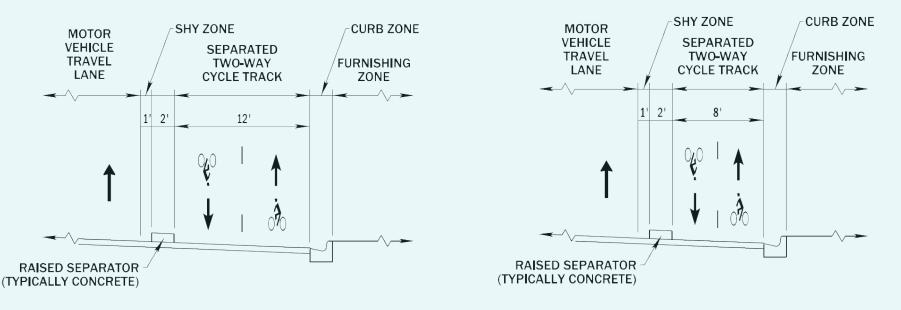
- Provides physical protection against encroaching vehicle traffic, increasing safety and comfort
- Low implementation cost by using existing pavement and drainage when space is available
- Reduces or eliminates conflict between parking cars, parked car doors, and bikes
- Prevents double-parked or loading vehicles from blocking the facility

SEPARATED BICYCLE LANE (CONSTRAINED)

Considerations:

- When a raised concrete divider is used, provide periodic breaks in the raised concrete for open channel drainage flow
- If bus stops are located along a roadway with a separated bicycle lane, provide accessible bus islands between the adjacent travel lane and the separated bicycle lane for passenger loading and unloading to eliminate conflicts with bicyclists and buses; consider raised pedestrian crossings to maintain flush access for bus passengers walking or rolling between the sidewalk and the bus island
- Mid-block curb ramps may be provided near marked accessible parking spaces, or curb ramps may be provided at a consistent interval to provide additional egress points for wheelchair users to gain access to the sidewalk
- May create design challenges for right-turning vehicles
- Street maintenance vehicles may have difficulty to maintain

3. Roadway Realm Design



Two-Way Separated Bicycle Lanes

A two-way Separated Bicycle Lane has the added bicycle mobility advantage of allowing travel in both directions on the same side of the road. This arrangement allows for enhanced comfort and safety for users while allowing for the efficiency of riding along a street rather than an off-street path.

Two-way separated bicycle lanes require mitigation for conflicts at intersections, including dedicated bicycle signals as they may be shifted more closely to the travel lanes on minor intersection approaches. They may be preferred in highly urban environments where it is easier to provide bicycle facilities only on specific streets, particularly if those streets are one-way to vehicles.

Target width for two-way separated bicycle lanes 12 feet, but in constrained situations 8 feet may be acceptable.

SEPARATED TWO-WAY CYCLE TRACK (TARGET)

SEPARATED TWO-WAY CYCLE TRACK (CONSTRAINED)

Two-way bicycle lane separated by buffer and plastic delineators Photo by Kimley-Horn

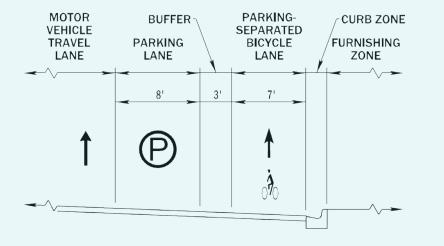
Two-way bicycle lane with concrete separator with drainage

Source: Valerie Nielsen, Palm Beach TPA

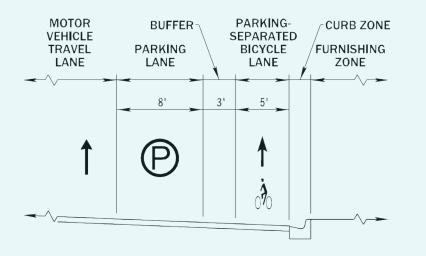
Benefits:

- The wider overall facility width of two-way cycle tracks may simplify accommodating disabled users
- Increased capacity for areas with high bicycle traffic volume
- All the benefits of Separated Bicycle Lanes also apply to Two-Way Separated Bicycle Lanes

Considerations:


- A "DO NOT ENTER" sign with "EXCEPT BIKES" plaque shall be posted along the facility to only permit use by bicycles
- When provided on the same side of the street as transit stops, an accessible bus island should be provided between the separated bicycle lanes and the adjacent travel lane to reduce bicycle and bus conflicts

Parking Separated Bicycle Lanes


Parking-Separated Bicycle Lanes are a unique type of separated lanes where the vehicle parking lane serves as a buffer between bicycles and motor vehicles. In this case, the parked vehicles provide an additional level of protection for bicyclists further increasing safety and comfort if appropriate buffer width is provided for opening car doors, loading, and unloading. Parking-separated bicycle lanes can be considered in places where on-street parking is necessary. This design is most effective when paired with buffers and physical separators such as flexible plastic delineators or planters.

In this configuration, the minimum width of the parking lane is 8 feet since the parking lane is "floating" not adjacent to the curb-and-gutter. The minimum width of the door zone buffer is 3 feet to reduce the risk of injury to bicyclists from dooring crashes. Therefore, the minimum width of the combined bicycle lane plus buffer plus parking lane is 16 feet.

Parking separated bicycle lane with buffer Parking separated bicycle lane with constrained buffer Photos by Kimley-Horn

PARKING-SEPARATED BICYCLE LANE (TARGET)

PARKING-SEPARATED BICYCLE LANE (CONSTRAINED)

Benefits:

- Offers a separation and added protection to bicyclists
- Where on-street parking is present, it offers a sensible use of existing resources

Considerations:

- Buffer space is necessary to avoid "dooring" or other conflicts with parked vehicles
- Special attention should be given to on-street parking accessibility

Contra-Flow Bicycle Lanes

Contra-Flow Bicycle Lanes flow in the opposite direction of vehicular traffic on one-way streets. Unlike motor vehicles, bicyclists can travel in both directions on these streets often creating shortcuts in networks thereby incentivizing bicycle traffic. Contra-Flow Bicycle Lanes work best in residential and local commercial neighborhood areas and are less appropriate along streets with high volumes. Contra-Flow Bicycle Lane width should be a minimum of 5 feet when adjacent to curb and gutter.

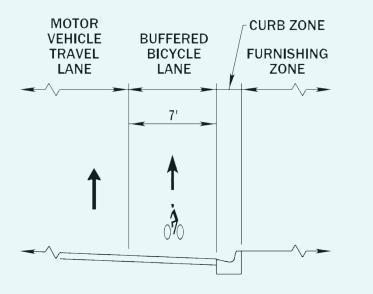
Benefits:

• Provides two way traffic for byclicists on one-way streets

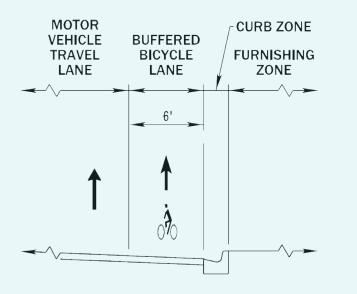
Considerations:

 Intersection traffic controls along the street (e.g., stop signs and traffic signals) shall also be installed and oriented toward bicyclists traveling in the contra-flow direction

Contra-Flow Bicycle Lane Source: Town of Medley


1 1 1 1

Buffered Bicycle Lanes


Buffered bicycle lanes use a striped or painted buffer on the roadway surface as separation between bicyclists and adjacent vehicles. The buffer can also be provided between the bicycle lane and a parking lane to reduce conflicts between bicycles and opening vehicle doors. This space can be temporarily used by faster bicyclists for passing slower users without intruding in the vehicle travel lane. Buffered bicycle lanes increase comfort over conventional bicycle lanes but are subject to conflicts with parking vehicles when a parking lane is present. Special consideration is also necessary at transit stops, pedestrian crossings, and turning points. As no physical separation exists, enforcement and signage are important components of keeping buffered bicycle lanes clear of vehicles.

Buffered bicycle lanes are the current standard for Broward County and FDOT roadways. Broward County Bicycle Pavement Markings & Signs Details (Appendix A) provides detailed drawings for buffered bicycle lane markings.

BUFFERED BICYCLE LANE (TARGET)

Benefits:

- Provides greater separation between motor vehicles and bicycles than conventional lanes
- Provides extra space to allow for passing or obstacle avoidance in the bike lane without entering the vehicle travel lanes
- Can provide greater space between bikes and parked cars with a buffer between the parking and bike lanes
- If sufficient space exists through lane width narrowing, no major street reconstruction would be necessary for their installation making it a cost-effective enhancement to conventional lanes

Considerations:

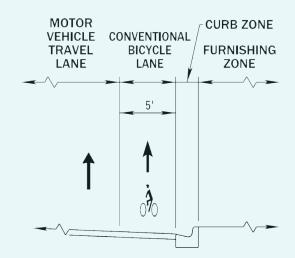
- Signage and enforcement may be required to prevent loading and waiting vehicles from using the space
- As no physical separation exists, markings and color should be considered for driveway intersections to enhance awareness of the potential for bike presence

BUFFERED BICYCLE LANE (CONSTRAINED)

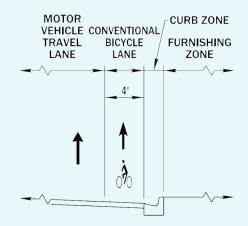
Conventional Bicycle Lanes

The conventional bicycle lane consists of a striped on-street lane at the edge of the vehicle lanes, flowing in the same direction as motor vehicle traffic. Pavement markings and signage are used to designate the space for the exclusive use of bicyclists (Appendix A). This is the most basic form of a dedicated bicycle facility. This classification provides for more predictable travel patterns than shared lanes, thus increasing actual -as well as perceived- safety for all street users. Bicycle lanes can be placed between vehicle lanes and the curb or, if parking is present, between travel lanes and the parking lane. Conventional bicycle lanes should accommodate space to separate bicycles both from the street gutter and associated debris and from adjacent vehicles. The recommended width for Conventional Bicycle Lanes is 5 feet, with a constrained width of 4 feet.


Conventional Bicycle Lanes are appropriate for local neighborhood streets with speed limits of 30 mph or less. On collector or arterial roadways, Conventional Bicycle Lanes are only appropriate where space does not exist or cannot reasonably be repurposed to provide separated or buffered bicycle lanes. For example, Conventional Bicycle Lanes should only be provided on a resurfacing project if minimum lane width standards would be violated by providing Buffered Bicycle Lanes.


Benefits:

- Provides basic predictability of bicycle travel and positioning for bicyclists, pedestrians, and motorists
- Encourages bicyclists to ride on the traveled way rather than the sidewalk
- Increases the total throughput capacity of the street as compared to a mixed vehicle/bicycle lane


Considerations:

- For bicycle lanes adjacent to a parking lane, provide an edge stripe on the parking lane to keep vehicles from parking partially in the bicycle lane. Providing a wider parking lane can also allow for space to avoid the "dooring" of passing bicyclists.
- Always consider upgrading a conventional bicycle lane to a buffered bicycle lane

CONVENTIONAL BICYCLE LANE (TARGET)

CONVENTIONAL BICYCLE LANE (CONSTRAINED)

Shared Lanes

Some streets may have sufficiently low volume and speeds to allow for motor vehicles to share the road with bicycles. In these cases, Shared Lane pavement markings contribute to the overall safety of cyclists by increasing awareness of drivers.

- Low Stress Networks streets in a residential neighborhood optimized for road sharing using pavement markings, signage, and traffic calming measures. These streets are low volume, low speed, and often run parallel to arterial roadways.
- Marked Shared Lanes should not be used on roads with speed limits over 35 mph

Bicyclist on shared neighborhood lane

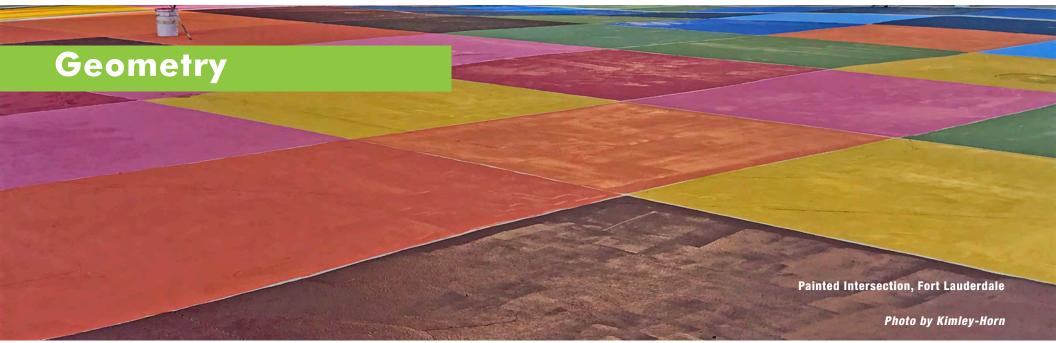
12.5

122

1

Ale

Photo by Kimley-Horn



Providing bicycle and pedestrian facilities is not enough - an effective network must also incorporate special accommodations to safely cross the Roadway Realm. In most street settings, intersections are for the location of the most conflict zones. Crash data often show a significant concentration of incidents occurring at crossings, be it among motor vehicles or also involving pedestrians and bicyclists. To address safety concerns, it is essential to design and plan Intersections so that all road users are protected, with emphasis on disadvantaged groups.

The design of an intersection can be a decisive factor in determining whether a space is inviting or intimidating for walking. Street corners can enhance the sense of place of a block by including factors that encourage people to stay and feel comfortable along a street. Some of the elements that may be placed at street corners to make them more attractive include:

- Amenities such as corner groceries, restaurants, cafes, convenience or specialty retail stores (corner buildings should locate their entrances at the corner, rather than midblock)
- Temporary structures such as mobile mini markets, newsstands, carts, or kiosks promoting local food vendors and inducing walking trips for basic necessities
- Mobility hubs, including bus shelters, bikeshare racks, and information/wayfinding boards
- Art installations, murals, or sculptures that assist with urban recognition and define the character of the neighborhood

Crosswalk Placement and Design

Special Emphasis Crosswalk

Special Emphasis Crosswalks enhance the visibility of these facilities by incorporating ladder, zebra, or continental crosswalk markings, as they have been shown to improve yielding behavior. Special Emphasis Crosswalks shall consist of 24 inch white longitudinal bars across the roadway spaced on each lane line and in the center of each motor vehicle lane. On the State Highway System, the FDOT Design Manual specifies that Special Emphasis Crosswalks should be installed at all signalized intersections on all marked legs and at roundabouts, while Standard Crosswalks may be used at stop or yield-controlled intersections.

Special emphasis crosswalk with bicycle box, Las Olas Boulevard

Pedestrians on a conventio crosswalk, Oakland Park

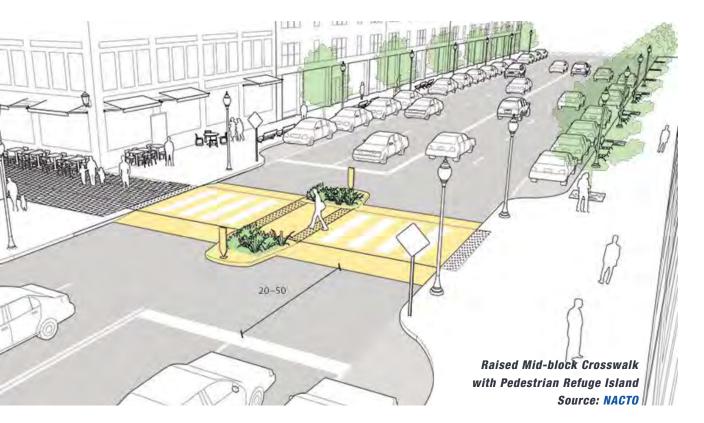
Photos by Kimley-Horn

Conventional Crosswalk

RESTAURANT

The most basic crossing facility is the Conventional or Standard Crosswalk, consisting of two striped markings which that enclose the dedicated space for pedestrians to cross the road. The path should allow for directness following the line of pedestrian movement. The Conventional Crosswalk should be striped as wide or wider than the sidewalk it connects to, so that people coming from both directions can comfortabley cross at the same time. Highly visible markings are preferred, as they have been shown to improve yielding from drivers who are more likely to see the pedestrians. Moreover, anAn advanced stop bar perpendicular to the travel lane should be located at least 8' 4 feet ahead of the crosswalk to alert drivers of the impending crossing. Where necessary, Rightright-turn-on-red restrictions may be issued to avoid conflicts between turning cars and crossing pedestrians.

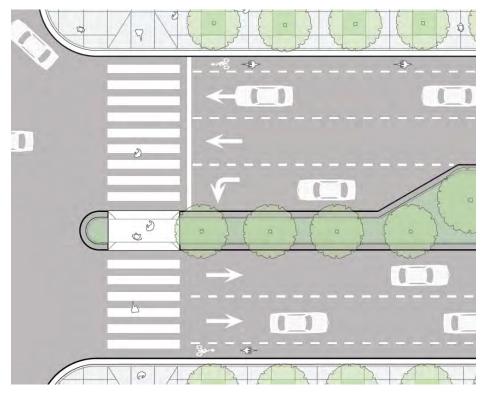
These crosswalks may be controlled and signalized or notOn arterial and collector roadways, Conventional Crosswalks should only be used across controlled approaches – either signalized or stop-controlled – unless additional safety treatments such as a raised crosswalk are also incorporated.


Added features can be used to increase safetyconspicuity, including variations in paving materials including special pavement treatments, decorations, textures, or changes in elevation. Raised crosswalks continue through the intersection at the same level as the sidewalk, defining the space as pedestrian-oriented. This is as much a traffic-calming measure as a pedestrian enhancement

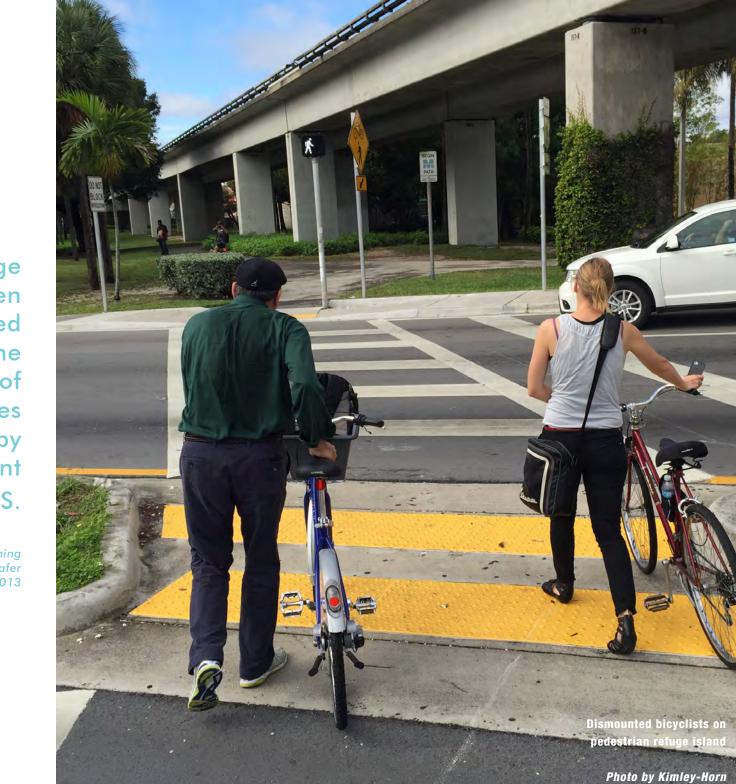
Mid-Block Crosswalk

Data evidence has shown that pedestrian fatalities tend to be more likely to occur at midblock locations. Faced with few opportunities along a long block, pedestrians may be tempted to cross at unmarked, uncontrolled points, creating unexpected conflict points.

Well-designed street crossings occurring between intersections provide shortcuts for pedestrians to safely reach their destinations. More so, Mid-Block Crosswalks can enhance the pedestrian experience in situations where destinations, activated public spaces, or pedestrian boulevards are located midblock, drawing activity from foot traffic.

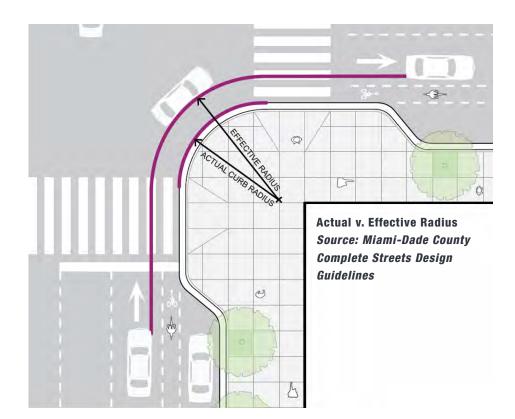

Examples of nearby institutions where Mid-Block Crosswalks may prove essential to enhance safety include: schools, museums, parks, plazas, waterfronts, courthouses, or airports. Desire lines may be used as an indication of need for a Mid-Block Crosswalk, and existing and forecasted pedestrian traffic volume should be considered.

Advance stop bars and STOP HERE FOR PEDESTRIANS signs should be used in Mid-Block Crosswalks to alert drivers of the impending crossing. The stop bar for vehicles should be set back 20-50 feet. Crossing signals further emphasize the priority of pedestrians.


Pedestrian Refuge Islands (Median)

Provide a waiting area on the street median for pedestrians, effectively dividing the crossing distance into two shorter segments where pedestrians cross one direction of traffic at a time. They are most appropriate on wide, multilane streets with bidirectional traffic, as they allow people to focus on incoming traffic one direction at a time. Pedestrian Refuge Islands can also enhance safety at unsignalized crossings and may be used at intersections or mid-block crossings. They may also be placed where safety is a primary concern and high volume of people crossing, such as near schools, transit stations, shopping plazas, or large offices.

A Pedestrian Refuge Island must be designed to be at least 6 feet wide so that it can accommodate wheelchairs, strollers, and bicycles, but a preferred width of 10 feet is recommended to match the width of the crosswalk. In addition, Pedestrian Refuge Islands should have a "nose" extending past the crosswalk to protect waiting people from turning vehicles. The walkway in a Pedestrian Refuge Island should be at the elevation of the crosswalk. Lastly, they may be improved by adding a furnishing zone and stormwater control.



Special Emphasis Crosswalk with Pedestrian Refuge Island Source: Miami-Dade County Complete Streets Design Guidelines

Pedestrian Refuge Islands have been demonstrated to decrease the percentage of pedestrian crashes and casualties by 57 – 82 percent in the U.S.

> FHWA "Traffic Calming Countermeasures Library" Safer Journey, 2013

Curb Radi

The radius of a curb can control the speed at which motor vehicles turn, and ultimately determines the total distance a pedestrian must walk to cross the street. Smaller curb radii create a safer environment, since a sharper turn can force motorists to slow down. Additionally, the crossing distance for pedestrians is reduced and the size of waiting areas are increased; both elements enhance the comfort of the pedestrian experience.

Two measurements are used to define curb radii: Actual Radius and Effective Radius. The first refers to the curve created by the curb line, while the former refers to the path vehicles follow when turning.

The Florida Greenbook sets a 15 feet minimum curb radii, this measurement may be used as the standard for safety improvement.

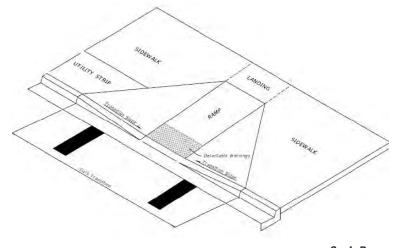
In instances where larger vehicles such as trucks or buses need additional space for turning, the effective radius can be increased without affecting the actual radius.

Some potential strategies to resolve any potential conflicts between the needs of pedestrians and motorists include:

- Adding a parking lane to expand the effective radius
- Recessing the stop bar on the receiving street
- Use of pavement textures or colors to create a smaller actual curb radius
- Adding a curb extension to reduce the actual distance pedestrians must travel to cross the street
- Assuming occasional large vehicles will need to complete their turn into a lane other than the curb lane
- In cases where the intersection geometry includes a radius 50' or larger, consider installing a channelized right turn lane complemented by a pedestrian refuge island

ADA Treatments

The Americans with Disabilities Act (ADA) sets all-inclusive design requirements that ensure access to the built environment for people with disabilities. Complete Streets must adhere to these standards, including:


- Intersections should be designed so that they do not create barriers to mobility for anyone
- Provide ramps at the curbs to direct pedestrians into the crosswalk with a minimum of 4 feet deep by 5 feet wide level landing pad and a detectable warning strip at the street edge. Moreover, the pedestrian path must be free of any fixed objects that obstruct the way.
- Provide visual and audio information including audible warning systems

	Constrained	Target	Maximum
Curb Ramp Width	4'	Width of Pedestrian Walking Zone	Width of Sidewalk Realm
Curb Extension Width	4'	8'	Do not block an existing or potential bicycle lane
Curb Extension Length	Width of Curb Ramp	20'	As needed to improve pedestrian visibility and prohibit parking near intersection
Crossing Refuge Island Width	6'	10'	Width of Median

Recommended Curb Ramp Dimensions

Photo by Kimley-Horn

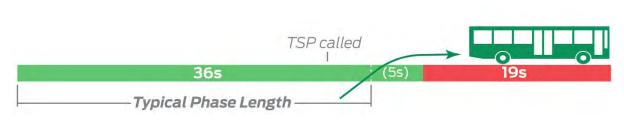
Curb Ramp Source: FDOT Design Manual

Transit Elements

Bus Queue Jump Lanes

A bus queue jump lane is a special bus preferential treatment that combines a short, dedicated transit lane, or shared right-turn lane, with a special traffic signal phasing that allow buses to jump to the front of the queue during congestion and then proceed through the signalized intersection more efficiently. Bus Queue Jump Lanes are an advanced form of Transit Signal Priority (TSP).

New Bus-Only **Traffic Signal** Buses will use the right turn lane to go through the intersection.


Bus Queue Jump Lane Source: FDOT

Transit Signal Priority (TSP)

Transit Signal Priority (TSP) involves a set of signal timing strategies that modify the signal timing in favor of transit vehicles and especially those with longer headways. The signal is triggered by an onboard automatic vehicle location (AVL) signal when a bus is determined to be running behind schedule. The TSP picks up the signal and may turn the traffic light green for the upcoming transit vehicle (Early Return to Green), or extend the green (Green Extension) to allow the bus to pass through.

Although Green Extension is the most commonly used form of TSP, alternatives include Green Reallocation, Early Return to Green (Red Truncation), Upstream Green Truncation, Phase Sequence Changes, and Phase Reservicing.

The reductions in travel time are key at increasing reliability in the service and in turn influence demand. As expected, their effects are much more pronounced when implemented in combination with other transit-oriented measures such as dedicated transit lanes.

Source: TSP Green Extension, NACTO

"TSP's can significantly improve travel times through heavily signalized corridors, with varying studies reporting a nearing 10% reduction in travel time and up to 50% reductions in delays at some intersections"

NACTO, Transit Street Design Guide

Traffic Control Elements for Crossing Safety

0

0

Pedestrian Signals

A Pedestrian Signal shows the right of way and number of seconds left for pedestrians to cross the street and should be provided at each leg of an intersection.

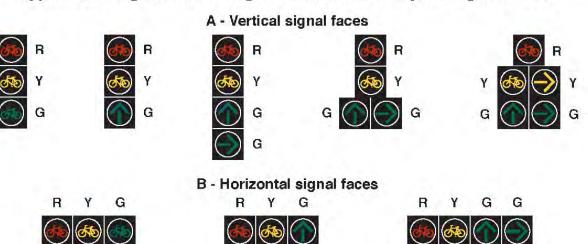
The signal may be activated through the push of a button, or passively through pedestrian detection systems. A "WALK" sign or a symbol of a walking person is used to indicate right-of-way for pedestrians. A Leading Pedestrian Interval (LPI) allows a WALK phase 5 seconds ahead of the concurrent green signal to place pedestrians at a visible spot in the crosswalk to drivers. Phase duration tends to be based on walking speed of 3.5 ft/sec, although 2.8 ft/sec is preferred in certain scenarios, such as in areas with higher rates of senior population. A "DON'T WALK" countdown sign indicates changing signal.

98 AMERICAN SOCIAL A SELF SERVICE BE **CRAFT BEER & SPIRITS** 54 TAPS Pedestrians crossing on WALK signal, Fort Lauderdale Photo by Kimley-Horn

Bicycle Signals

Bicycle Signals provide for separate traffic control of the bicycle movement. They are similar to vehicle traffic signals, except it shows a bicycle in green to indicate right-of-way.

Bicycle Signals should be used in combination with existing conventional traffic signals or hybrid beacon, and may be further complemented by push buttons, signage, and pavement markings to emphasize right-of-way. Passive activation of Bicycle Signals is preferred. If the Bicycle Signal is used to separate through bicycle movements from turning vehicles, then no turn on red shall be required when the bicycle signal is active. As with Pedestrian Signals, a leading interval is useful in alerting drivers of the impending bicyclist crossing. Moreover, sufficient interval time for crossing must be allowed, and should be determined to accommodate the 15th percentile biking travel speed in correlation with the intersection width.



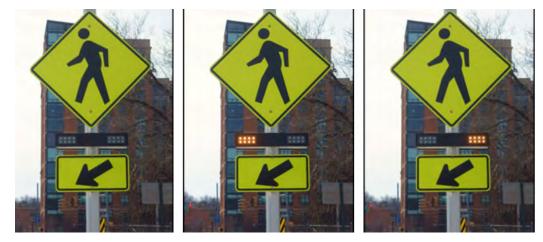
Installation of Bicycle Signals is particularly appropriate at conflict zones or where a bicyclist would otherwise not have a signal facing them, as well as in Contra-Flow and Two-Way Separated Bicycle Lanes.

Installation has been found to result in increased compliance by bicyclists with the traffic control, and have been shown to reduce bicycle crash rate up to 45% where bicycle volumes simultaneously increase¹

USDOT, FHWA Interim Approval for Optional Use of a Bicycle Signal Face

1

Typical Arrangements of Signal Sections in Bicycle Signal Faces


NACTO recommends the total clearance interval (Ci) to be calculated as function of intersection width (W) and typical bicyclist speeds (V), where:

Source: NACTO

Source: MUTCD IA-16, FHWA

Rectangular Rapid Flashing Beacons (RRFBs)

RRFB's offer a lower cost alternative to pedestrian traffic signals. These solar powered panel units are activated through the pushing of a button or passively through a pedestrian detection system. Flashing warning lights below the sign panel alert drivers of the immediate presence of a pedestrian crossing or requesting to cross the street. They should be used in combination with other measures, including advanced STOP HERE FOR PEDESTRIANS signs. RRFBs are appropriate on lower speed roadways of 35 mph or less.

Source: MUTCD IA-21, FHWA

Pedestrian Hybrid Beacons (PHBs)

PHBs are a traffic control device that assigns right of way for pedestrians. It consists of two red lenses above a single yellow lens, and it's activated when a pedestrian pushes the call button to cross the street. At that point, the lenses start flashing, alerting drivers of pedestrians crossing the street. Immediately after a WALK sign appears on the pedestrian signal. Once the pedestrian has completed the crossing, all lights turn dark until the call button is pressed again. PHBs are most impactful at mid-block crossings or uncontrolled intersections along higher speed, multilane streets.

Motorist compliance has been shown to exceed 90% at PHBs, and in direct correlation, sites with PHBs have been shown to decrease pedestrian crashes up to 69% and total crashes up to $29\%^2$

R SB SR R R FY Y SY 1. Dark Until Activated 2. Flashing Yellow 3. Steady Yellow 4. Steady Red During Pedestrian Walk Interval Upon Activation Legend FR FR R R R SY Steady yellow FY Flashing yellow SR Steady red 5. Alternating Flashing Red During 6. Dark Again Until Activated FR Flashing red Pedestrian Clearance Interval

Source: Pedestrian Hybrid Beacon Guide, FHWA

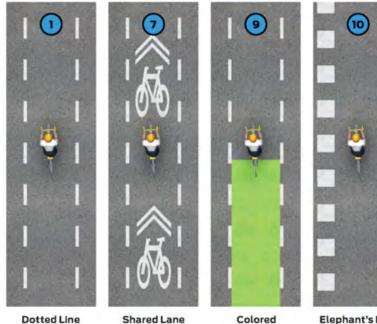
2 USDOT, Federal Highway Administration, Proven Safety Countermeasures

CHASE 0-

Continuous Bicycle Lane with Right-Turn Pocket (Keyhole Lane)

Keyhole lanes are bicycle lanes placed between the through lane and the adjacent right turn lane, bus bay, or parking lane. The FDOT Design Manual calls for 7 feet buffered keyhole lanes on curbed roadways, with a minimum of 5 feet in constrained areas. Keyhole lanes provide continuous bicycle lanes through an intersection approach and eliminate potential right hook conflicts.

Keyhole Lane


Photos by Kimley-Horn

11111222

Pavement Markings through Intersections

Bicyclist safety can be improved through continued pavement markings at the intersection, clearly indicating the intended path for bicyclists to follow across while making drivers aware of bicycle presence. The treatments can vary, and generally consist of stripes, dotted lines, shared lane markings, continued green coloring, or a combination of these measures. In cases of bidirectional bicycle traffic, this should be visibly marked. Specifically, wider and offset intersections are benefitted from these pavement treatments.

Bicycle Pavement Marking Standards for Broward County are shown in Appendix A

Shared Lane Markings

Elephant's Feet

Intersection Crossing Markings Source: NACTO

Bicycle Boxes

Bicycle Boxes are chief among safety measures at intersections, as they minimize conflict between bikes turning left across traffic or cars turning right across the bike lane. A delineated green box for bicyclists to wait for a green phase is placed across all lanes just behind the pedestrian crossing and ahead of the motor vehicles. The box should be 10 to 16 feet deep and may be combined with bicycle signals to allow bicyclists to cross ahead of vehicular traffic.

For this setup, the stop line for cars must be set back at least 10 feet from its prior location to provide space and visibility of bicyclists and right-turn-on-red should be restricted as to avoid vehicles from moving into the Bicycle Box during red phase. Moreover, as per the FHWA, at least 50 feet of bicycle lane should be provided on the approach to a Bicycle Box to eliminate the need for bicyclists to ride between lanes to reach the Bicycle Box.³

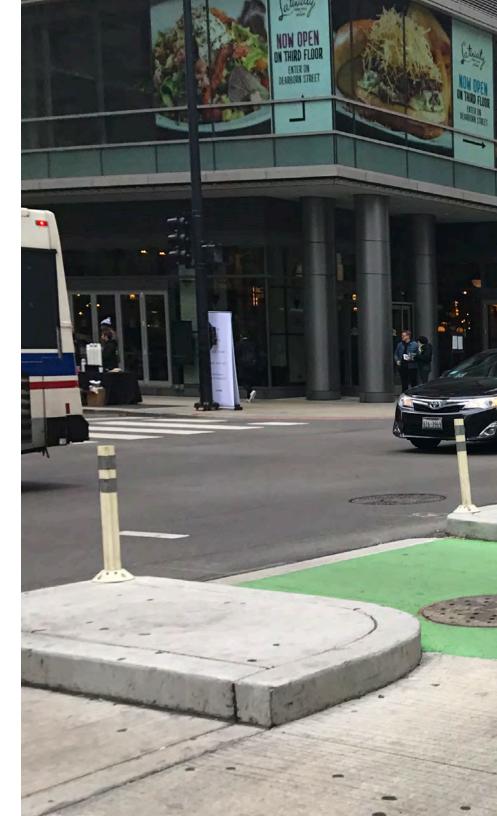
3 IA.18: Intersection Bicycle Box, FHWA, 2016

"A study in Portland, Oregon found that 77 percent of cyclists felt bicycling through the intersections was safer with bike boxes, and bike boxes reduce motor vehicle encroachment at intersections by almost 20 percent."

Monsere & Dill, 2010

Two-Stage Turn Queue Boxes

Two-Stage Turn Queue Boxes are Marked marked areas where bicyclists are anticipated to make twostage crossings to make execute a left turn. It allows bicyclists to complete the turn in two-stages avoiding crossing traffic lanes. On the first stage, the bicyclist moves from the bicycle lane to the bicycle box and completes the turn when allowed by traffic or a traffic signal. Proper bicycle symbol and turn arrow pavement markings must be provided to indicate the directions for bicyclists to follow, wait, and turn. As with Bicycle Boxes, turn-on-red must be restricted as to avoid vehicles moving into the Queue Boxes. Moreover, The FDOT restricts the installation of Bike Boxes and Two-Stage Turn Queue Boxes to signalized intersections only, as to avoid additional conflicts.


Research from the Netherlands, Mexico, and China indicate that Two-Stage Turns Turn Queue Boxes may be more effective for dealing with left turns than Bicycle Boxes. However, NACTO Urban Bikeway Design Guide further suggests placing bicyclists in line with a curb or parking area for added protection. A consideration of Two-Stage Turn Queue Boxes is that it may cause delays for bicyclists, now having to wait for two different green phases

Complete Streets Design Guidelines 2.0

Separated Bicycle Lanes at Intersections

Special consideration must be given to Separated Bicycle Lanes at Intersections. Improving visibility is a priority for Separated Bicycle Lanes as well as Raised Separated Bicycle Lanes to manage any potential conflicts with turning vehicles. One common solution is to end the protection of the bicycle lane at this point and use special pavement treatments to maintain safety. A bicycle facility must be provided at the intersection to ensure the safe crossing, including conventional lanes, green lanes, bicycle boxes, two-stage turn queue boxes, and bicycle signals. The NACTO Urban Bikeway Design Guide recommends a width of 6 feet, with an absolute minimum of 4 feet, for transitioning into a non-separated bicycle lane. The transition must be made smooth, clearly marked, and slow bicyclists down using tactile warnings or pavement markings. Moreover, sufficient space must be allowed between the parking lane and intersection (minimum of 20 to 40 feet) and wherever possible the bicycle lanes should be placed behind transit stops.

Separated bicycle lane at intersection, Chicago

01

-

1

a "

1

atres

- 22

1.4

····

-

CLARK

-

7.1

ITTAT.

PARKING

Ĥ

-

4

Photo by Kimley-Horn

E

Implementation

The Broward MPO's Mobility Program, which serves as the implementation arm of the Complete Streets Initiative. This program focuses on implementing projects and improvements identified in Broward MPO's plans, studies and initiatives that provide additional transportation options other than the automobile. Projects under this program include the construction of bicycle and pedestrian facilities and other Complete Streets supportive infrastructure that complement the goals and vision of the Broward MPO's Complete Streets Program to create safer and healthier streets.

The Broward MPO works closely with its member governments to implement Complete Streets projects. It is known a successful approach promotes flexibility and emphasizes the partnerships between municipalities, community advocates, stakeholders and the development community. Partnerships are key to the success of the Mobility program.

Broward MPO's vision, "Our work will have measurable positive impact by ensuring transportation projects are well selected, funded, and delivered." Established requirements has been set to allocate funding and move projects forward to implementation.

Complete Streets Design Guidelines 0

Scope of Work

A clearly defined scope of work is crucial to successful implementation of projects. Scope of work should include well-defined limits and identify all elements included as part of the project that can be implemented within the right-of-way (ROW).

Partner Collaboration

It is expected that local partner governments will work with the appropriate local agencies in developing realistic project scopes. If a partner does not have jurisdictional ownership of the roadway, they will be expected to coordinate with the roadway owner(s) on the proposed improvements to obtain their support. This includes working closely with proper authorities to maintain adequate access on established evacuation routes and adequate outside lane width along transit routes.

Cost Estimates

It is important to develop a realistic project cost estimate to ensure funding is programmed accordingly.

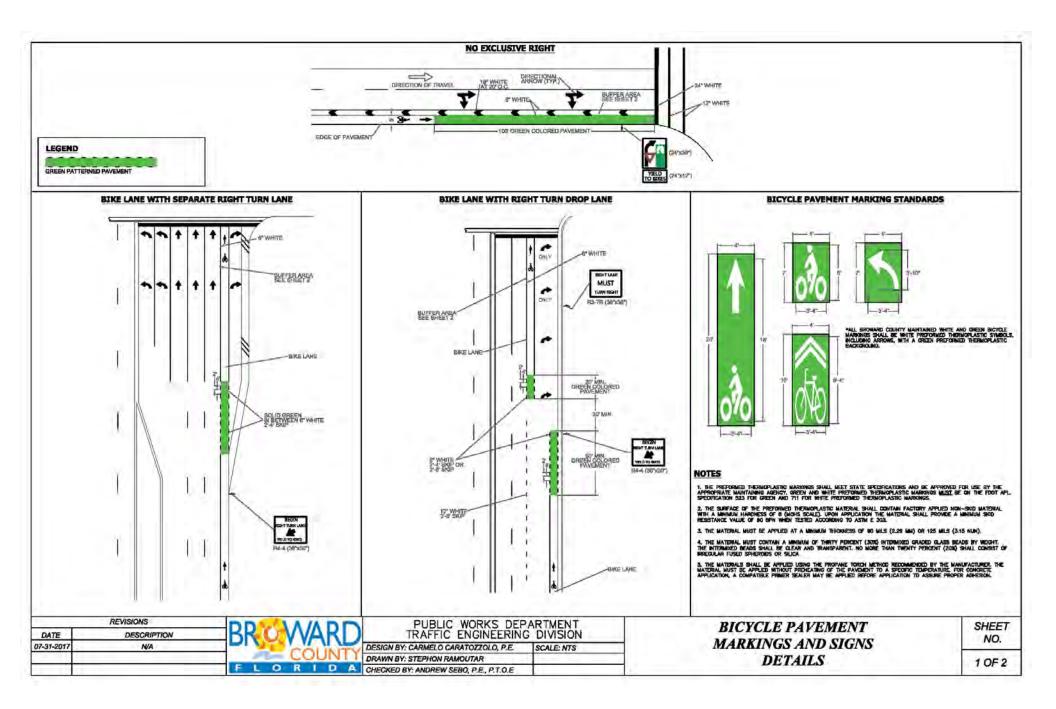
Complete Street demonstration project Sunset Strip from NW 72 Avenue to NW 19 Street

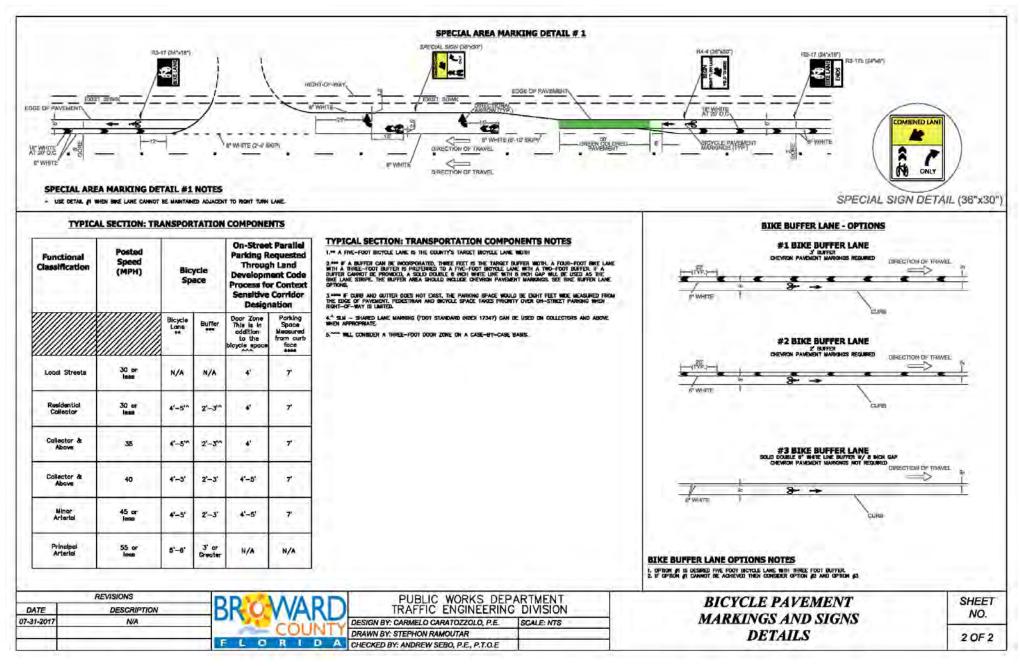
Source: Complete Streets Master Plan

Resolution

Political and community vetting is required to move projects forward and minimize problems/issues during the implementation process.

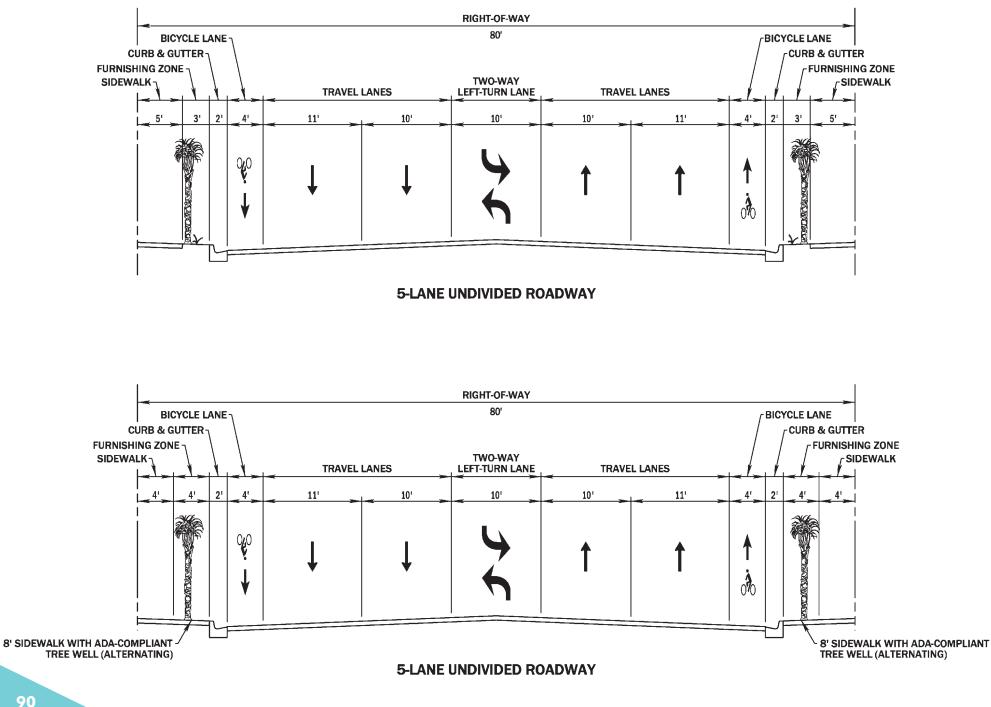
- Commission Resolution An executed resolution of support from the Jurisdictional owner is required. This resolution should include the project description, limits, commitment to maintain the project, and an endorsement for FDOT to deliver the project on the agency's behalf.
- Public/Community support Well-documented community and stakeholder support for each project is required.


Once all the requirements are met, projects will be forwarded to FDOT District IV office for a feasibility review. When the project is determined to be feasible, the project will be considered "program ready" and the Broward MPO will facilitate an "initial" scoping meeting to establish clear roles and responsibilities, verify and/or modify project elements, and provide opportunity for additional local partner input including transit agencies. Coordination with emergency services will began at this stage of the process to ensure the proposed improvements do not interfere or delay emergency response.

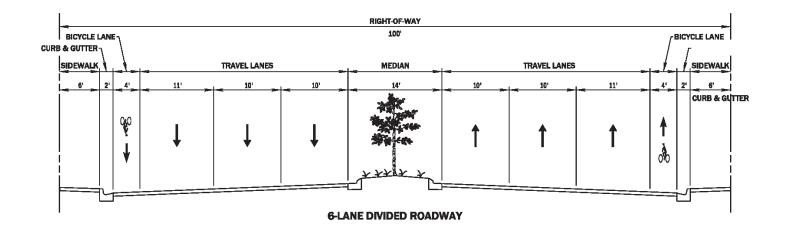

Foll-owing the initial scoping meeting, the project will be incorporated into the FDOT Work Program and the Broward MPO's five-year TIP for funding. Typically, FDOT programs the funding for new projects in the fifth year of the five-year work program since the FDOT Work Program and the TIP are fiscally constrained documents. FDOT will design and construct the project on the local government's behalf.

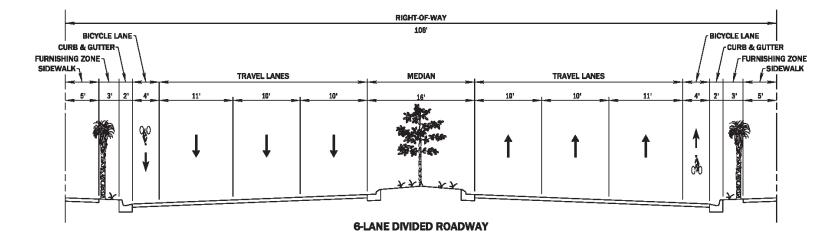
Appendix A

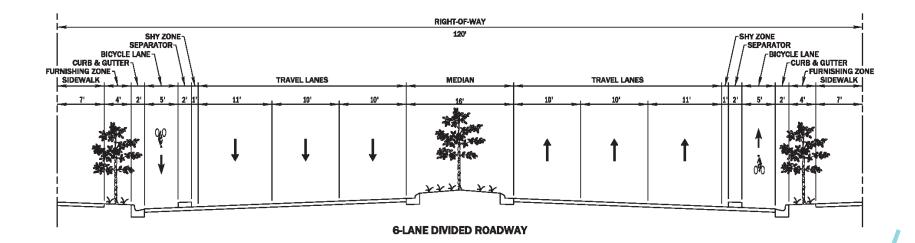
Broward County Bicycle Pavement Markings & Signs

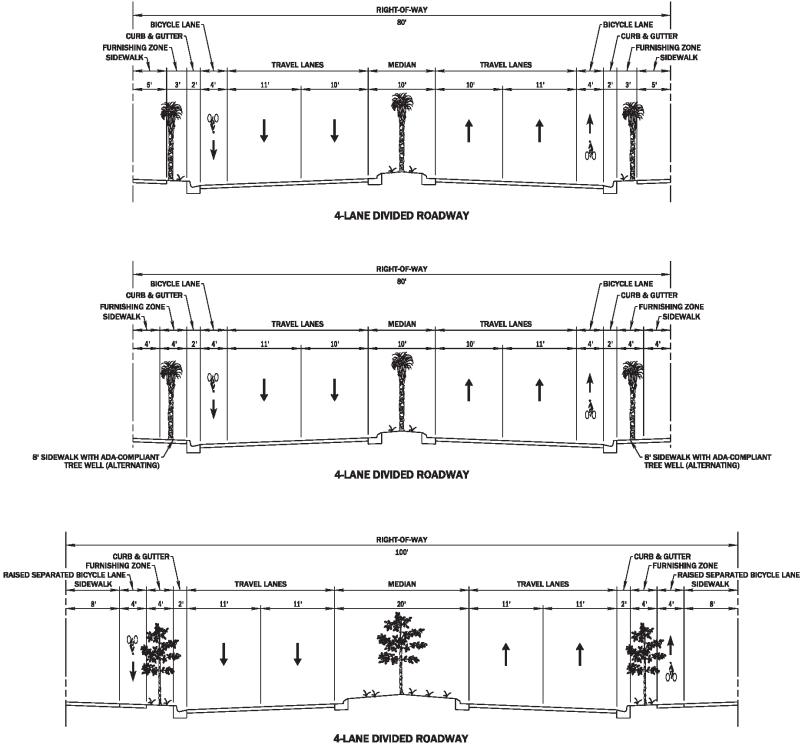


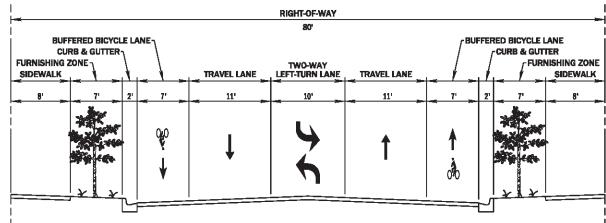
To access the latest Broward County publications on Bicycle Pavement Markings and Signs Details visit: Traffic Engineering Division

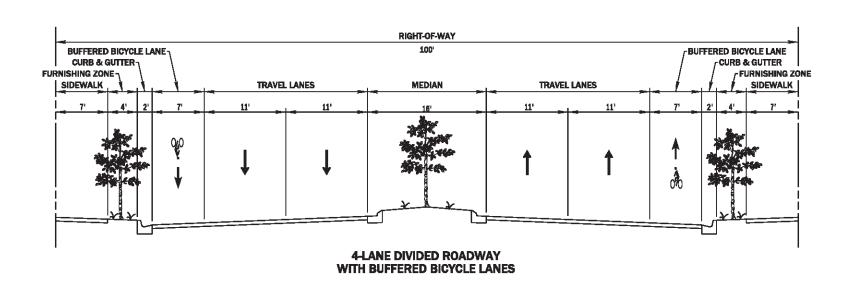

Appendix B



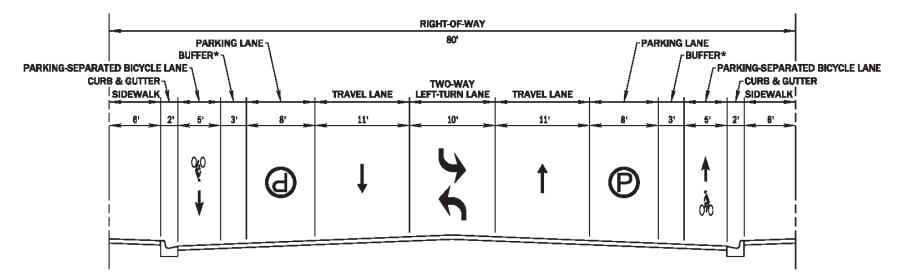

Typical Sections

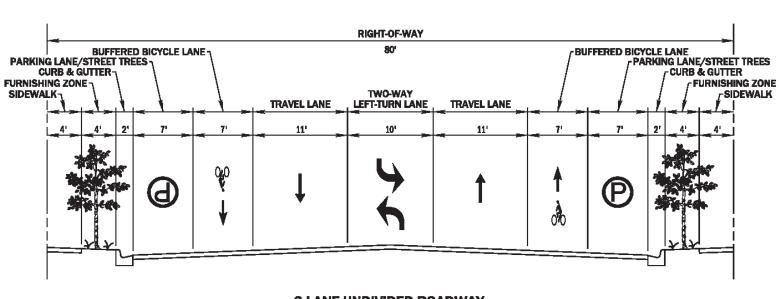


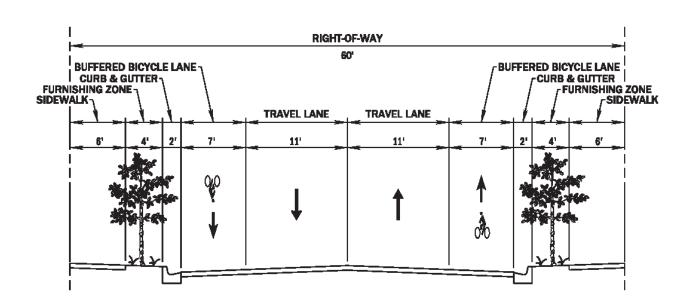




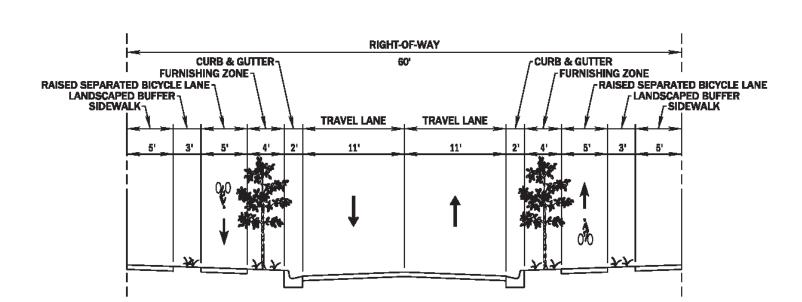
WITH RAISED SEPARATED BICYCLE LANES




*BUFFER MAY INCLUDE ELEMENTS SUCH AS


*BUFFER MAY INCLUDE ELEMENTS SUCH AS TUBULAR DELINEATORS, PLANTERS, OR CURBING

3-LANE UNDIVIDED ROADWAY WITH PARKING-SEPARATED BICYCLE LANES



3-LANE UNDIVIDED ROADWAY WITH ON-STREET PARKING

2-LANE ROADWAY WITH RAISED SEPARATED BICYCLE LANES

Move People & Goods | Create Jobs | Strengthen Communities